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detecting spatial structure.

PACS: 05.20.-y 05.45.-a 65.40.Gr 89.70.+c 89.75.Kd
Santa Fe Institute Working Paper 02-11-065 arxiv.org/abs/cond-mat/0212078

I. INTRODUCTION

The past decade has seen considerable advances in our
understanding of general ways to detect and quantify pat-
tern in one-dimensional systems. This work is of intrinsic
and general interest, since it suggests different ways of
viewing patterns and calls attention to some of the sub-
tleties associated with pattern discovery and quantifica-
tion [1], issues that — implicitly or explicitly — underlie
much of the scientific enterprise.

Recently, these abstract measures of structural com-
plexity or pattern played a key role in several applications
in physics and dynamical systems. For example, there is
a growing body of work that seeks to relate the structural
complexity of a one-dimensional sequence to the difficulty
one encounters when trying to learn or synchronize to
the generating process [2–5]. Also, complexity measures
have recently been used to characterize experimentally
observed structures in a class of layered materials known
as polytypes [6].

The successes in one dimension have not been readily
followed by similar advances in two dimensions. Nonethe-
less, the development of a general measure of complexity
— or pattern or structure — for two-dimensional sys-
tems is a longstanding goal. How is information shared,
stored, and transmitted across a two-dimensional lattice
to produce a given set of configurations? How can we
quantitatively distinguish between different types of or-
dering or pattern in two dimensions? Though largely
answered in one dimension, these questions are open in
higher dimensions.

One oft-used set of techniques for examining patterns is
Fourier or spectral analysis. This approach is well suited
to detecting periodic ordering when the wavenumber of
the transform matches the periodicity of the pattern.
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However, these methods typically rely on two-variable
correlation functions. As such, they are incapable of dis-
tinguishing structures that differ in their correlations over
more than two variables, as we shall see below.

Some recent work in this area, motivated in part by the
need to characterize complex interfaces in surface science
and geology [7–13], has suggested a set of approaches to
these questions that are similar in spirit to fractal dimen-
sions, in the sense that these approaches involve coarse-
graining variables and then monitoring the changes that
result as the coarse-graining scale is modulated. One can
also use a multifractal approach, also known as the singu-
larity spectrum, “f(α)”, the thermodynamic formalism,
and the fluctuation spectrum; for reviews, see, e.g., [14–
16]. All of these approaches can be applied to spatial
structures, but they suffer several drawbacks. For one,
they are not fully spatial, in the sense that their calcula-
tion requires one to discard spatial information. Second,
they do not directly speak to the correlation present in a
system; rather they are more measures of entropy, disor-
der, and inhomogeneity.

Other recent general approaches to pattern in two di-
mensions include the extension of the formal theory of
computation [17] and an information-theoretic approach
[18] somewhat similar in spirit to that which we develop
below. See also Ref. [19].

In this work, we take a different approach to the ques-
tion of pattern and structure in two spatial dimensions.
Our starting point is the excess entropy, an information-
theoretic measure of complexity that is commonly used
and well understood in one dimension [2, 20–29]. Our
main goals are severalfold. First, we introduce three
ways to extend the definition of excess entropy to more
than one dimension, noting that these extensions are not
equivalent. Second, we report results of estimating two
of these forms of excess entropy for a standard statisti-
cal mechanical system: the two-dimensional Ising model
with nearest- and next-nearest-neighbor interactions on
a square lattice. We show that these two forms of ex-
cess entropy are similar but not identical, that each is
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sensitive to the structural changes the system undergoes,
and that they are able to distinguish between different
patterns that have the same structure factors. Third,
we discuss some of the subtleties and challenges asso-
ciated with moving from a one- to a two-dimensional
information-theoretic analysis of pattern and structure.

II. ENTROPY AND ENTROPY
CONVERGENCE IN ONE DIMENSION

We begin by reviewing information-theoretic quantities
applied to one-dimensional (1D) systems. This allows us
to define quantities and to fix notation that will be useful
in our discussion of two-dimensional (2D) information
theory in the subsequent section.
Let X be a random variable that assumes the values

x ∈ X , where X is a finite set. We denote the probability
that X assumes the particular value x by Pr(x). Like-
wise, let Y be a random variable that assumes the values
y ∈ Y. The Shannon entropy of the random variable X
is defined by:

H[X] ≡ −
∑

x∈X

Pr(x) log2 Pr(x) . (1)

The entropy H[X] measures the average uncertainty, in
units of bits, associated with outcomes of X. The condi-
tional entropy is defined by

H[X|Y ] ≡ −
∑

x∈X ,y∈Y

Pr(x, y) log2 Pr(x|y) (2)

and measures the average uncertainty associated with
variable X, if we know the outcome of Y . Finally, the
mutual information between X and Y is defined as

I[X;Y ] ≡ H[X]−H[X|Y ] . (3)

Thus, Y carries information about X to the extent that
knowledge of Y reduces one’s average uncertainty about
X. The above three definitions are all standard; for de-
tails, see, e.g., Ref. [30].

A. Block Entropy and Entropy Density

Now consider a 1D chain . . . S−2S−1S0S1 . . . of random
variables Si that range over a finite setA. This chain may
be viewed as a 1D spin system, a stationary time series
of measurements, or an orbit of a symbolic dynamical
system. We denote a block of L consecutive variables
by SL ≡ S1 . . . SL. The probability that the particular
L-block sL occurs is denoted Pr(sL). We shall follow
the convention that a capital letter refers to a random
variable, while a lower case letter denotes a particular
value of that variable.
We now examine the behavior of the Shannon entropy

H(L) of SL. The total Shannon entropy of length-L

sequences—the block entropy—is defined by

H(L) = −
∑

sL∈AL

Pr(sL) log2 Pr(s
L) . (4)

Graphically, we represent this as

H(L) ≡ H
[

←−L−→
]

. (5)

The sum in Eq. (4) is understood to run over all possible
blocks of L consecutive symbols. The entropy density is
then defined as

hµ ≡ lim
L→∞

H(L)

L
. (6)

The above limit exists for all spatial-translation invariant
systems [30]. Eqs. (6) and (4), together, are equivalent
to the Gibbs entropy density. However, the information-
theoretic vantage point allows us to form another ex-
pression for the entropy density, one that will lead to a
measure of structure.
The entropy density hµ can be re-expressed as the limit

of a form of conditional entropy. To do so, we first define

hµ(L) ≡ H[SL|SL−1SL−2 · · ·S1] . (7)

In words, hµ(L) is the entropy of a single spin conditioned
on a block of L−1 adjacent spins. This can also be written
graphically:

hµ(L) = H[ |
L−1−→

] . (8)

The pictogram on the right indicates that the entropy is
conditioned on the L−1 spins directly to the right of the
single target spin , with the bold vertical lines denoting
the boundary where the target spin and spin block abut.
One can then show that the entropy density defined in
Eq. (6) can be written as:

hµ = lim
L→∞

hµ(L) . (9)

For a proof that the limits in Eqs. (9) and (6) are equiva-
lent, see Ref. [30]. As the block length L grows, the terms
in Eq. (9) typically converge to hµ much faster than those
in Eq. (6). See, e.g., Ref. [31] and citations therein.

B. Excess Entropy

The entropy density measures the randomness or un-
predictability of the system; hµ is the randomness that
persists even after correlations over infinitely long blocks
of variables are taken into account. A complementary
quantity to the entropy density is the excess entropy E

[20–28]. The excess entropy may be viewed as a measure
of the apparent memory or structure in the system.
The excess entropy is defined by considering how the

finite-L entropy density estimates hµ(L) converge to their
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asymptotic value hµ. For each L, the system appears
more random than it actually is by an amount hµ(L)−hµ.
Summing up these entropy-density overestimates gives us
the excess entropy:

EC ≡
∞
∑

L=1

(hµ(L)− hµ) . (10)

The excess entropy thus measures the amount of apparent
randomness at small L values that is “explained away”
by considering correlations over larger and larger blocks.
The subscript in EC indicates that this form of excess
entropy is defined by considering how the entropy density
converges to hµ.
Another expression for the excess entropy is obtained

by looking at the growth of the block entropy H(L). By
Eq. (6), we know that H(L) typically grows linearly for
large L. The excess entropy can be shown to be equal to
the portion of H(L) that is sublinear—E is the subexten-
sive part. That is, the excess entropy is defined implicitly
by:

H(L) = ES + hµL , as L→∞ . (11)

Here, the subscript “S” on ES serves as a reminder that
this expression for the excess entropy is the subextensive
part of H(L).
Finally, one can show [24, 29] that the excess entropy

is also equal to the mutual information between two ad-
jacent semi-infinite blocks of variables;

EI = lim
L→∞

I[S−L . . . S−2S−1;S0S1 . . . SL−1] (12)

= lim
L→∞

I
[

←−L

;
L−→

]

. (13)

The “I” in the subscript indicates that this expression for
the excess entropy is given in terms of a mutual informa-
tion. Note that in the pictographic version, Eq. (13), the
two semi-infinite blocks are understood to be adjacent,
as indicated by the thick vertical lines.
The three different forms for the excess entropy — EC,

ES, and EI — given above are all equivalent in one di-
mension [24, 29]. We represent these different forms with
distinct symbols because they are not identical in two di-
mensions.
In the subsequent section we compare our results for

the excess entropies with various structure factors—
standard quantities from statistical physics used to detect
periodic structure. The definition of the structure factor
begins with the two-spin correlation function:

Γij ≡ 〈(si − 〈si〉)(sj − 〈sj〉)〉 (14)

= 〈sisj〉 − 〈s〉2 , (15)

where si and sj denote the value of spins at different
lattice coordinates. The second equality follows from
the translation invariance of configurations. The angular
brackets indicate a thermal expectation value. In 2D we

will be interested in spins that are separated horizontally
or vertically, but not both. (In a scattering scenario,
this corresponds to restricting ourselves to a situation in
which the particles to be scattered are incident along a
line parallel to one of the axes of the lattice.) We de-
fine Γ(r) as the correlation function between two spins
separated, horizontally or vertically, by r lattice sites:

Γ(r) ≡ 〈s0sr〉 − 〈s〉2 . (16)

The structure factor, then, is the discrete Fourier trans-
form of the correlation functions:

S(p) =

∞
∑

r=1

cos

(

2πr

p

)

Γ(r) . (17)

If the correlation function has a strong period-p com-
ponent, then S(p) is large; if not, S(p) is small. The
absolute magnitude of S(p) is generally not interpreted;
only the relative change as a function of p is. In this way,
the structure factor serves as a signal of correlations in a
configuration at a given periodicity.
It is widely held that the excess entropy E serves as a

general purpose measure of a system’s structure, regular-
ity, or memory; for recent reviews, see [2, 26, 29]. The
excess entropy provides a quantitative measure of struc-
ture that may be applied to any 1D symbolic string. In
Refs. [28, 32, 33], we argued that E may be viewed as an
effective order-parameter for 1D spin systems. In partic-
ular, we showed that the excess entropy is sensitive to
periodic structure at any period, whereas structure fac-
tors, by construction, are sensitive to ordering at only a
single spatial period. We shall return to this point be-
low and show that the same general claim holds in two
dimensions as well.

III. TWO-DIMENSIONAL ENTROPY,
ENTROPY DENSITY, AND EXCESS ENTROPY

A. Generalizing to Higher Spatial Dimensions

Below we discuss how to extend the 1D analysis out-
lined above to apply to spatial patterns in two and higher
dimensions. Before launching into definitions and for-
malism, we sketch some of the philosophy and intuitions
that motivate the path we take and highlight some of
the general issues that arise as one moves from 1D to 2D
systems.
Patterns in two dimensions are fundamentally differ-

ent than those in one dimension. For example, in one
dimension a natural way to scan a configuration exists:
left-to-right, say. That is, each local variable is indexed
in a well defined order. (The information-theoretic mea-
sures discussed in the previous section have the same val-
ues regardless of whether the 1D configuration is scanned
left-to-right or right-to-left.)
The 1D approach simply does not generalize to 2D in

such a unique, natural way. One might be tempted to
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scan or parse a 2D configuration by taking a particular
1D path through it. One would then apply 1D mea-
sures of randomness and structure to the sequences thus
obtained. For example, in Refs. [34, 35], a space-filling
curve is used to parse a 2D configuration and, from this,
the entropy density of the configuration is estimated.

While the 1D-path method does yield the correct en-
tropy density, it is also clear that it projects additional,
spurious structure onto the configuration. By snaking
through the lattice, it is inevitable that sites, adjacent
in the 2D lattice, occur far apart in the 1D sequence.
As a result, long-range correlations appear in the latter.
Thus, a 1D excess entropy (or any other 1D measure
of structural complexity) adapted in this way will cap-
ture not only properties of the 2D configuration, but also
properties of the path. Except in special cases and with
appropriate prior knowledge, it does not appear possi-
ble to disentangle these two distinct sources of apparent
structure. These, and related difficulties with the 1D ap-
proach have been discussed in some detail in, for example,
Refs. [22, 28, 36].

Here, we seek an alternative to understanding a 2D
pattern by parsing it into 1D strings. We are immediately
faced with a problem, however. There is a unique, com-
plete ordering of the connected, nested subsets of a 1D
lattice such that the conditional entropies of the target
spin, conditioned on this sequence of subsets, are mono-
tonic decreasing. It is this ordering that makes Eq. (10)
unambiguous and unique in 1D. In contrast, connected,
nested subsets of a 2D lattice that have this monotonic
property are not unique. This is a direct consequence of
the topological differences between one and two dimen-
sional lattices. We shall see that this lack of uniqueness
introduces ambiguity in extending Eq. (10) to two dimen-
sions; specifically, there is no natural, unique expression
for the excess entropy in two dimensions.

This lack of uniqueness is not a cause for concern. In
fact, it seems a desirable property. Given the richness
and subtleties of 2D patterns, one would expect that it
would take more than one (or even several) complexity
measures to adequately capture the range of 2D struc-
tures and orderings. These different measures will cap-
ture different features of the 2D configuration. As such, it
is particularly important to specify the context in which
a complexity measure is to be used and state what the
measure is intended to capture, as we and others have
argued elsewhere [27, 37–39].

As an example of this non-uniqueness in 2D, consider
what occurs when one moves from calculus of one variable
to multi-dimensional calculus. In 1D calculus, the deriva-
tive is well defined for all smooth curves; the derivative is
simply a number. In contrast, in 2D the derivative is not
unique at each point on a surface; one must also specify
the direction in which it is taken. There is a subspace (the
tangent plane) of first derivatives of a smooth surface at
any single point. A similar scenario appears to hold for
the excess entropy in two dimensions. In Ref. [29] we syn-
thesized a number of information-theoretic approaches to

structure in one dimension by developing an analysis in
terms of discrete derivatives and integrals. We expect
that similar (although not unique) measures of structure,
randomness, and memory can be developed for 2D sys-
tems by making use of discrete calculus in two dimen-
sions. The work presented below is a first step in this
direction.

B. Entropy Density

The entropy density in two dimensions is defined in
the natural way. Consider an infinite 2D square lattice of
random variables Sij whose values range over the finite
set A. Assuming that the variables are translationally
invariant, the 2D entropy density is given by:

hµ = lim
N,M→∞

H(N,M)

NM
, (18)

where H(M,N) is the Shannon entropy of an N x M
block of spin variables. This limit exists for a transla-
tionally invariant system, provided that the limits are
taken in such a manner that the ration N/M remains
constant and finite.
Is there a way to re-express the 2D entropy density

of Eq. (18) as the entropy of a target variable condi-
tioned on a block of neighboring variables, analogous to
Eq. (9)? This question was, to our knowledge, first an-
swered in the affirmative by Alexandrowicz in the early
1970’s [40, 41]. Meirovitch [42, 43] and later Schlijper and
co-authors [44, 45] extended and applied Alexandrowicz’s
work. These methods have also been discovered indepen-
dently by Eriksson and Lindgren [46, 47] and Olbrich et
al. [48]. Here we briefly summarize the central result and
adapt it to our needs.

M = 1 M = 3M = 2

FIG. 1: Neighborhood templates for 2D conditional entropies.
The target spin is denoted with an X.

The most general approach to the conditional entropy
in two dimensions proceeds as follows. Let hµ(M) denote
the Shannon entropy of the target spin conditioned on a
2D neighborhood template of 2M(M+1) spins. Arrange
the spin template in an (M+1)×(2M+1) rectangle, with
the target spin in the center of the rectangle’s top row
and with the top, rightmost M spins deleted from the
template. A sequence of neighborhood templates of this
type is shown in Fig. 1. For example, hµ(3) is the entropy
of the target spin (denoted by an X) conditioned on all
the other spins in the rightmost template of Fig. 1. The
2D entropy density hµ may then be shown to be equal to
[46, 47, 49, 50]:

hµ = lim
M→∞

hµ(M) . (19)
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If it is known that the interactions between spins are of
finite range, then one only needs to use a shape as thick
as the interaction range [40, 41, 44–46]. For example,
the following section we consider a 2D Ising model with
nearest- and next-nearest-neighbor interactions. In this
case, one uses a strip with a thickness of two lattice sites;
see Fig. 2.

1

23 4

5

6

7

8

9

10

11

1213

14

FIG. 2: Target spin (X) and neighborhood templates for con-
ditional entropies used in our study of the 2D NNN Ising
model. The cell numbers indicate the order in which the sites
are added to the template. For more discussion, see text.

We now slightly modify the definition of the template-
size parameter M in the conditional single-site entropy
hµ(M) so as to apply to the scenario in Fig. 2. The
cell numbers in this figure indicate the order in which
individual sites are added to the neighborhood template.
For example, hµ(3) now will denote the entropy of the
target spin (S00) conditioned on the three spins labeled
1 (S−10), 2 (S01), and 3 (S−11); that is,

hµ(3) = H[S00|S−10, S01, S−11] . (20)

In the M → ∞ limit, the new hµ(M) still goes to the
entropy density, as in Eq. (19). It is also not hard to see
that this convergence must be monotonic:

hµ(M) ≤ hµ(M
′) , M > M ′ . (21)

This is a direct consequence of the fact that conditioning
reduces entropy [30]; that is, the conditional entropy of
a variable cannot increase as a result of increasing the
number of variables upon which it is conditioned.
A few remarks about the neighborhood template in

Fig. 2 are in order. First, the strip needs to be two sites
thick since the system explored below has interactions
that extend across two lattice sites. In this case, a strip
with a thickness of two sites shields one half of the lat-
tice from the other. In the limit that the strip is infinitely
long in the horizontal direction, then the probability dis-
tribution of the target spin is independent of the values
of the spins beneath the strip [50].
Second, at first blush, the numbering scheme in Fig. 2

appears ambiguous. Spins are added to the template in
order of increasing Euclidean distance from the target
spin. For example, spin 10 is a Euclidean distance 2

√
2

from the center spin, whereas spin 11 is a distance of 3.
Since 2

√
2 < 3, one adds on spin 10 before 11. When

there is a tie, one adds the leftmost spin. For example,
spins 3 and 4 are the same Euclidean distance from the
center spin; spin 3 comes before 4 since it is to the left.
Of course, one can use alternative ordering schemes,

such as adding spins in a widening spiral or some other
geometric pattern. These choices do not change the result
in Eq. (19), since this is a statement about what happens

in the limit that an arbitrarily large number of spins have
been added to the template. However, looking ahead, the
order in which spins are added can affect the convergence
form of the 2D excess entropy—the 2D analog of EC of
Eq. (10).
As noted above, the ambiguity in how the neighbor-

hood template of conditioning variables grows is a direct
result of the fact that a 2D lattice does not specify a strict
ordering of its elements in the way that a 1D sequence
does. Rather, a 2D lattice specifies a partial ordering
of its elements. Thus, there will always be “ties” in the
sense just mentioned, and so there is no unique, natural
way to add on the spins one-by-one based on an order-
ing of subsets of spin blocks. See Ref. [51] for a detailed
discussion of this, albeit in a slightly different context.
Third, there is a physical motivation for the neigh-

borhood template of Fig. 2 articulated by Kikuchi [52].
Picture a crystal growing by adsorbing one particle at
a time. One can imagine that particles are added one-
by-one, left to right, on top of already formed layers of
the solid. This is exactly the process captured by the
templates of Figs. 1 and 2.
As remarked above, the conditional Shannon entropy

method for calculating the entropy density hµ is well
known and has been successfully applied to a number
of different systems. For example, in Ref. [45] Schli-
jper and Smit form upper and lower bounds for the
entropy using block probabilities. They combine these
bounds to obtain impressively accurate results for the
entropy of the 2D Ising model and the q = 5, 2D Potts
model. This method for calculating the entropy has also
been applied to the Ising model on a simple cubic lat-
tice [43], a 2D hard-square lattice gas [53], the three-
dimensional fcc Ising antiferromagnet [54], coupled map
lattices [48], Gaussian random fields [55], polymer chain
models [56], and network-forming materials [57]. Quite
recently, Meirovitch [56] estimated the entropy for the
2D Ising ferromagnet. Remarkably, his results have only
a 0.01% relative error at the critical temperature, where
one might expect the conditional entropy form to overes-
timate the entropy density due to long-range correlations
missed by finite-size templates.

C. Excess Entropy in Two Dimensions

We now turn to the question of how to extend excess
entropy to more than one dimension. In Sec. II B we
saw that there were three different forms for the excess
entropy: EC, obtained by looking at how the entropy
density converges to its asymptotic value; EI, the excess
entropy defined via a block-to-block mutual information;
and ES, the excess entropy as the subextensive part of
the total entropy H(L). In this section we consider three
possible approaches to excess entropy in two dimensions.
For each, we begin with one of the three different forms
for the 1D excess entropy.
First, consider the convergence excess entropy EC, as
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defined in Eq. (10). In the previous section we defined
a sequence of 2D entropy density estimates hµ(M) that
converges from above to the entropy density hµ. We can
sum these entropy density over-estimates to obtain the
2D convergence excess entropy:

EC ≡
∞
∑

M=1

(hµ(M)− hµ ) . (22)

We shall see that this form of the excess entropy is, like its
1D cousin, capable of capturing the structures or corre-
lations present in a 2D system. Note that this definition
can depend on the order in which spins are added on to
the template and, as discussed in the previous section,
there is no unique ordering to use to determine the se-
quence in which to add sites. Nevertheless, our investiga-
tions have shown that any reasonable choice for ordering
yields an EC that behaves qualitatively the same as that
defined in Eq. (22).
The mutual information form EI of the excess entropy,

defined in Eq. (13), can naturally be extended by con-
sidering the mutual information between two adjacent,
infinite half-planes.

EI ≡ lim
M,N→∞

I

[ ↑
N
↓

←−M −→

;

←−M −→

↑
N
↓

]

(23)

As in Eq. (13), it is understood that the two semi-infinite
planes are adjacent.
Finally, one may also develop an expression for

2D subextensive excess entropies by considering how
H(M,N) grows with M and N . In analogy to Eq. (11),
we define three subextensive excess entropies via:

H(M,N) = H

[

←−M −→

↑
N
↓

]

(24)

∼ ES +E
x
SM +E

y
SN + hµMN . (25)

Note that in an isotropic system, such as that considered
below, Ex

S = E
y
S. We shall not consider these forms for

the 2D excess entropy here, opting instead to focus on
EC and EI.

IV. RESULTS

A. Next-Nearest-Neighbor Ising Systems

To test the behavior of the different forms of the excess
entropy, we estimated EI and EC numerically for a stan-
dard system: the 2D spin-1/2 Ising model with nearest-
neighbor (NN) and next-nearest-neighbor (NNN) inter-
actions. We choose this system since it is rich enough to

exhibit several distinct structures and due to its broad
familiarity. Its Hamiltonian H is given by:

H = −J1

∑

<ij,kl>nn

SijSkl

−J2

∑

<ij,kl>nnn

SijSkl − B
∑

ij

Sij , (26)

where the first (second) sum is understood to run over
all NN (NNN) pairs of spins. Each spin Sij is a binary
variable: Sij ∈ {−1,+1}. The lattice consists of N ×N
spins; the spatial indices on spin variables run from 0 to
N − 1.
We estimated the structure factors S(1), S(2), and

S(4) with Eq. (17) by directly measuring the frequency
of occurrence of sisj and s in spin configurations gener-
ated by a Monte Carlo simulation that used a standard
single-site Metropolis algorithm on a lattice with peri-
odic boundary conditions. That is, we sampled configu-
rations with the canonical distribution: a configuration’s
probability is proportional to e−H(c)/T , where H(c) is the
energy of the configuration c and T is the temperature.
We used a lattice of 48×48 spins. Since we are not inter-
ested here in extracting the system’s critical properties,
there is no need to go to larger system sizes.
We estimated EC and EI from block probabilities by

observing the frequency of spin-block occurrences. To
estimate EC we used a template containing fifteen total
spins, as shown in Fig. 2, and marginals of this distribu-
tion for smaller template sizes. To estimate EI we calcu-
lated the mutual information of two adjacent 2 × 4 spin
blocks. For each J1 value we ran our Monte Carlo simu-
lation for up to 2 × 105 Monte Carlo timesteps (2 × 106
for J1 < −1.5) and then took data every 20 timesteps for
2×104 timesteps. One Monte Carlo timestep corresponds
to trying to flip, on average, each spin in the lattice one
time. We thus sampled approximately 2 × 106 template
configurations. For comparison, note that there are at
most (in the highly disordered regime) 216 ≈ 3 × 104
possible configurations in a template of 16 spins.

B. Excess Entropy Detects Periodic Structure

Our results are shown in Fig. 3. The temperature was
held at T = 1.0, the external field at B = 0.0, and the
next-nearest-neighbor coupling at J2 = −1.0. Figure 3
shows S(1), S(2), S(4), EI, and EC, as a function of J1 ∈
[−4.0, 4.0]. For all J1 values, the temperature is relatively
small compared to the average energy per spin. And so,
the configurations sampled are typically the ground state
with a few low-energy excitations.
As J1 is increased, the system moves through param-

eter regimes in which there are significant correlations
of period 2, 4, and 1. This is seen, for example, in the
behavior of the various structure factors; the structure
factors selected correspond to periods of 2, 4, and 1 lat-
tice sites.
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FIG. 3: Structural changes in the the 2D NNN Ising model
as a function of NN coupling J1 as revealed by structure fac-
tors (a) S(1), (b) S(2), and (c) S(4), and excess entropies
(d) EC (convergence) and (e) EI (mutual information). The
temperature was fixed at T = 1.0 and J2 was held at −1.0 as
the NN coupling was swept from J1 = −4.0 to J1 = 4.0 in
steps of δJ1 = 0.01, except near the S(1) spike at J1 ≈ 2.5
where δJ1 = 0.005. We performed at least 5 different runs
at each J1 in the range |J1| ≤ 1.15. Note the different scales
on the vertical axes: the excess entropies are measured in
bits of apparent memory; the structure factor magnitudes are
arbitrary. For more discussion, see text.

Physically, when J1 is large in magnitude and neg-
ative, the tendency for nearest neighbors to anti-align
dominates and the system’s ground state is antiferromag-
netic: a checkerboard pattern consisting of alternating
up and down spins. This pattern has a spatial period of
2. Not surprisingly, the period-2 structure factor S(2) in

Fig. 3(b) shows a strong signal in this low-J1 regime.

When J1 is near zero, the NN interactions are negligi-
ble compared to the NNN interactions. Thus, each spin
orients opposite its four next-nearest neighbors, while
disregarding its four nearest neighbors. The result is that
the lattice effectively decouples into four, noninteracting
sublattices. On each of these sublattices the spins al-
ternate in sign, resulting in a ground state with spatial
period 4. Note that the period-4 structure factor S(4) in
Fig. 3(c) has a large value near J1 = 0, indicating this
period-4 ordering.

As J1 is increased from 0, the tendency for the spins
to align grows stronger. Eventually this NN interac-
tion overwhelms the NNN interactions and the entire
lattice starts to align. This is the familiar paramagnet-
ferromagnet transition. Above J1 ≈ 2.5 the system ac-
quires a net magnetization; there is now an unequal num-
ber of up and down spins, whereas below J1 ≈ 2.5 there
are always, on average, equal numbers of up and down
spins. This transition is signaled by the distinct spike
in the period-1 structure factor S(1) near J1 ≈ 2.5 and
S(1)’s vanishing at larger J1. (The magnetic suscepti-
bility χ diverges at the critical point of a ferromagnet-
paramagnet transition. Since χ ∝ S(1), one expects to
see a spike in S(1) near this transition where the system
acquires a non-zero magnetization.)

In Fig. 3(d) and 3(e) we plot the mutual-information
excess entropy EI and the convergence excess entropy
EC versus J1 over the same parameter range. In the
large and negative J1 regime EI = EC = 1 bit, indi-
cating that there is one bit of information stored in the
configurations. The configurations have a simple struc-
ture (alternating up-down spins) and the magnitude of E
gives the information needed to specify the spatial phase
of the period-2 configurations. When J1 is large and the
system undergoes the transition to ferromagnetic order-
ing, EI = EC = 0, since the configurations consist of
all aligned spins, and there is no spatial information or
structure in them. In the intermediate regime (J1 ≈ 0),
EI and EC are markedly larger, indicating that the sys-
tem is more structured than elsewhere. We will return
shortly to discuss in detail what the values of EI and EC

mean.

Note that each excess entropy is sensitive to correla-
tions at all periodicities, despite the fact that each is
merely a single, unparameterized function. In contrast,
the structure factors S(p) are a one-parameter family of
functions that must be tuned a posteriori to find rele-
vant periodic structure. That is, the period-1 structure
factor S(1) detects only the period-1 correlations near
J1 = 2.5. Moreover, S(1) is unable to distinguish be-
tween the period-2 and period-4 orderings at J1 < −3.0
and J1 ≈ 0, respectively; S(1) ≈ 1 for both period-2 and
period-4 configurations.

Since the excess entropy E is a single, unparameterized
function sensitive to structure of any periodicity, it is a
more general measure of structure and correlation than
the structure factors S(p). Conversely, S(p) is somewhat
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myopic. By considering only two-point correlations mod-
ulated at a selected periodicity p, S(p) misses structure
that is either aperiodic or that is due to more-than-two-
spin correlations. In fact, E is even more sensitive and
general that these observations indicate.

C. E Distinguishes Structurally Distinct Ground
States

Looking closely at the mutual-information excess en-
tropy EI near J1 = 0 in Fig. 3(d), one notices that the
curve splits in two in the |J1| < 1.0 region. This can be
seen more clearly in Fig. 4, in which we plot EI versus
J1 in this region. We sampled the NN coupling J1 every
0.01 and we performed at least five different runs at each
J1 value. Sometimes EI = 3.0 bits, whereas for other
trials EI = 2.0 bits. Why are there two different values
for EI on different runs? And why, in contrast, is the
period-4 structure factor S(4) the same for all runs?
The answer is simple: there are multiple structurally

distinct ground states. The three possible ground-state
configurations are shown in Fig. 5. Note that for each
ground state, all NNN pairs of sites have opposite spin
values, thus minimizing the system’s energy. Note also
that each ground state is identical if one considers only a
horizontal or vertical slice; the repeating pattern of two
up spins followed by two down spins is the same.
After a long transient time, the system usually settles

into one of these three states. A boundary defect between
two different ground states has an energy cost associated
with it. As such, most boundaries are eventually de-
stroyed. Incidentally, the dynamics through which this
removal of boundary defects occurs is rather subtle and
can be very long-lived. For example, a boundary between
left and right diagonal phases costs more than a bound-
ary between the checkerboard and one of the striped
patterns. As a result, when the two different striped
phases come close, the checkerboard pattern emerges be-
tween them, pushing the stripe boundaries away from
each other. Moreover, as the temperature approaches
zero, we observe that there are times when the ground
state is simply not found via single-flip Metropolis Monte
Carlo dynamics. Similar phenomena have been observed
in other antiferromagnetic Ising models; for recent work,
see Refs. [58–60].
In any event, a straightforward calculation shows

that EI = 3 bits for the checkerboard configuration of
Fig. 5(a), whereas EI = 2 bits for the two striped phases.
(Similar calculations show that EC = 3 bits for both the
checkerboard and striped ground states.) Note, however,
that S(4) is the same for all three ground states. By
construction, S(4) measures only two-spin statistics ob-
tained by considering correlations along a horizontal or
a vertical direction. And so, the three ground states are
the same if one considers only isolated horizontal or ver-
tical slices; every slice consists of a repeating pattern of
two up spins followed by two down spins. Of course, one

2
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FIG. 4: The mutual-information excess entropy EI showing
the existence of multiple period-4 ground states.

can adapt the definition of S(p) to account for the diag-
onal striped phases, but this simply begs the question of
discovering the intrinsic patterns in the first place.
Near |J1| = 1 notice that EI and EC occur in plateaus

between 2 and 3 bits and above. This indicates that
the system has settled into a number of more structured
metastable states consisting of mixtures of the three
ground states.
In summary, we see that the mutual information ex-

cess entropy EI is capable of distinguishing between pat-
terns that are not distinct according to the structure fac-
tors S(p). In fact, we initially did not anticipate the
two striped ground states, glibly assuming that the only
ground state is the checkerboard. Our results for EI,
which we initially found confusing, led us to examine
the configurations more closely and to detect the dis-
tinct ground state structures. This, in turn, led us to no-
tice the rich dynamics of the configurations as they wend
their way towards one of the three ground states. In
short, these structural subtleties would have been missed
entirely had we relied solely on the structure factors.

(a) (b) (c)

FIG. 5: The three ground states for J1 ≈ 0, J2 < 0: (a)
checker board, (b) left-diagonal stripe, and (c) right-diagonal
stripe.

V. DISCUSSION AND CONCLUSION

We have introduced three extensions of the excess
entropy that apply to two-dimensional configurations.
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Each excess entropy expression is based on a different
way of viewing the one-dimensional excess entropy: the
convergence excess entropy EC measures the manner in
which finite-template entropy density estimates converge
to their asymptotic value; the subextensive excess en-
tropy ES is related to the subextensive forms of the block
entropy H(M,N); and the mutual information excess en-
tropy EI, is defined as the mutual information between
two halves of a configuration.
Applying two of these measures, EC and EI, to the

NNN Ising model, we have seen that these quantities cap-
ture the structural changes this system undergoes as its
parameters are varied. In contrast, the structure factors
are sensitive to periodic ordering of a particular period.
Moreover, our results show that the information excess
entropy EI cleanly distinguishes between two period-4
ground states, whereas the period-4 structure factor is
simply incapable of making such a structural distinc-
tion. Finally, the values that the excess entropies take
on are interpretable and give a quantitative measure of
the amount of structure in the system.
The picture that emerges, then, is that the various two-

dimensional excess entropies behave as expected; they
are clearly general purpose measures of two-dimensional
structure. The excess entropy, being sensitive to multi-
spin correlations, is capable of capturing patterns that
a particular structure factor misses. The excess entropy
does not decompose a pattern into periodic components,
reporting instead a measure of the total amount of ap-
parent information in a system.
The goal of this work is not to suggest that the ex-

cess entropy replace structure factors or, more generally,
Fourier analysis. We view the excess entropy not in com-
petition with Fourier analysis, but complementary to it;
the excess entropy is designed to answer a different set of
questions than those addressed by Fourier components.
For example, it has long been appreciated in dynamical
systems that power spectral analysis is of little help in
revealing the geometry of a chaotic attractor [61]. Anal-
ogously, spectral decomposition typically will say little
about how difficult it is to learn or synchronize to a pat-
tern.
Clearly, however, there is much more work to be done

to develop a thorough, well understood methodology for
two-dimensional patterns. One possible approach builds
on Refs. [4, 29, 62] which take a systematic look at en-
tropy growth and convergence by using a discrete cal-
culus. This work places several complexity measures
within a common framework and leads to new measures
of structure. From the study presented above, we con-
clude that a similar analysis in two dimensions, using a
two-dimensional discrete calculus, holds great promise.
Another area for future research concerns developing

relationships between measures of complexity of a pat-
tern and the difficulty of learning or synchronizing to it.

There has been recent work on this in one dimension
[2–4]. For example, in Refs. [4] we showed that the tran-
sient information [29], an information-theoretic quantity
complementary to the excess entropy, measures the to-
tal uncertainty experienced by an observer who, given
an accurate model of a process, must synchronize to it.
Synchronization, in this sense, means determining with
certainty in which internal state the process is. Estab-
lishing a similar result in 2D would be a significant aid
in understanding new aspects of higher-dimensional pat-
terns.

There are also, of course, a host of additional statistical
mechanical systems, each with its own range of distinct
structures, that should be similarly analyzed. Calculat-
ing excess entropies for them will facilitate developing our
understanding of the behavior of these different quanti-
ties and may even lead to discovering novel structural
properties. A natural choice is calculating the behavior
of E near the critical temperature, extracting critical ex-
ponents, and relating these exponents to others for the
well studied nearest-neighbor Ising model. It will also be
of interest to calculate the various excess entropy forms
for noisy Sierpinsky carpets and the like; this will allow
for direct comparison with calculations of the measures
of inhomogeneity put forth in Refs. [11, 12].

Ultimately, these different measures of structure —
those presented here and those developed by other au-
thors — will be judged not solely by their ability to
shed light on existing, well understood model systems
such as the NNN Ising model considered here. Instead,
the broader concern is how to use these information-
theoretic quantities to capture structure and patterns
in systems that are less well understood. Equally im-
portant is the question of establishing relationships be-
tween information-theoretic measures of structural com-
plexity and other quantities, including: physical mea-
sures of structure and correlation; computation-theoretic
properties; and the difficulty of learning a pattern.
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