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Intrinsic computation refers to how dynamical systems store, structure, and transform historical and
spatial information. By graphing a measure of structural complexity against a measure of random-
ness, complexity-entropy diagrams display the different kinds of intrinsic computation across an
entire class of systems. Here, we use complexity-entropy diagrams to analyze intrinsic computation
in a broad array of deterministic nonlinear and linear stochastic processes, including maps of the
interval, cellular automata, and Ising spin systems in one and two dimensions, Markov chains, and
probabilistic minimal finite-state machines. Since complexity-entropy diagrams are a function only
of observed configurations, they can be used to compare systems without reference to system
coordinates or parameters. It has been known for some time that in special cases complexity-
entropy diagrams reveal that high degrees of information processing are associated with phase
transitions in the underlying process space, the so-called “edge of chaos.” Generally, though,
complexity-entropy diagrams differ substantially in character, demonstrating a genuine diversity of

distinct kinds of intrinsic computation. © 2008 American Institute of Physics.

[DOLI: 10.1063/1.2991106]

Discovering organization in the natural world is one of
science’s central goals. Recent innovations in nonlinear
mathematics and physics, in concert with analyses of how
dynamical systems store and process information, has
produced a growing body of results on quantitative ways
to measure natural organization. These efforts had their
origin in earlier investigations of the origins of random-
ness. Eventually, however, it was realized that measures
of randomness do not capture the property of organiza-
tion. This led to the recent efforts to develop measures
that are, on the one hand, as generally applicable as the
randomness measures but which, on the other, capture a
system’s  complexity—its  organization, structure,
memory, regularity, symmetry, and pattern. Analyzing
processes from dynamical systems, statistical mechanics,
stochastic processes, and automata theory, we show that
measures of structural complexity are a necessary and
useful complement to describing natural systems only in
terms of their randomness. The result is a broad appre-
ciation of the kinds of information processing embedded
in nonlinear systems. This, in turn, suggests new physical
substrates to harness for future developments of novel
forms of computation.
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I. INTRODUCTION

The past several decades have produced a growing body
of work on ways to measure the organization of natural sys-
tems. (For early work, see, e.g., Refs. 1-20; for more recent
reviews, see Refs. 21-28.) The original interest derived from
explorations, during the 1960s to the mid-1980s, of behavior
generated by nonlinear dynamical systems. The thread that
focused especially on pattern and structural complexity origi-
nated, in effect, in attempts to reconstruct geometry,
topology,30 equations of motion,”’ periodic orbits,** and sto-
chastic processes33 from observations of nonlinear processes.
More recently, developing and using measures of complexity
has been a concern of researchers studying neural
computation,m’35 the clinical analysis of patterns from a va-
riety of medical signals and imaging tech11ologies,36_38 and
machine learning and synchronization,”f43 to mention only a
few contemporary applications.

These efforts, however, have their origin in an earlier
period in which the central concern was not the emergence of
organization, but rather the origins of randomness. Specifi-
cally, measures were developed and refined that quantify the
degree of randomness and unpredictability generated by dy-
namical systems. These quantities—metric entropy,
Lyapunov characteristic exponents, fractal dimensions, and
so on—now provide an often-used and well understood set
of tools for detecting and quantifying deterministic chaos of
various kinds. In the arena of stochastic processes, Shan-
non’s entropy rate predates even these and has been produc-
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tively used for half a century as a measure of an information
source’s degree of randomness or unpredictability.44

Over this long early history, researchers came to appre-
ciate that dynamical systems were capable of an astonishing
array of behaviors that could not be meaningfully summa-
rized by the entropy rate or fractal dimension. The reason for
this is that, by their definition, these measures of randomness
do not capture the property of organization. This realization
led to the considerable contemporary efforts just cited to de-
velop measures that are as generally applicable as the ran-
domness measures but that capture a system’s complexity—
its organization, structure, memory, regularity, symmetry,
pattern, and so on.

Complexity measures which do this are often referred to
as statistical or structural complexities to indicate that they
capture a property distinct from randomness. In contrast, de-
terministic complexities, such as, the Shannon entropy rate,
Lyapunov characteristic exponents, and the Kolmogorov—
Chaitin complexity, are maximized for random systems. In
essence, they are simply alternatives to measuring the same
property—randomness. Here, we shall emphasize complex-
ity of the structural and statistical sort which measures a
property complementary to randomness. We will demon-
strate, across a broad range of model systems, that measures
of structural complexity are a necessary and useful addition
to describing a process in terms of its randomness.

A. Structural complexity

How might one go about developing a structural com-
plexity measure? A typical starting point is to argue that the
structural complexity of a system must reach a maximum
between the system’s perfectly ordered and perfectly disor-
dered extremes.”®!*15194549¢ The pagic idea behind these
claims is that a system which is either perfectly predictable
(e.g., a periodic sequence) or perfectly unpredictable (e.g., a
fair coin toss) is deemed to have zero structural complexity.
Thus, the argument goes, a system with either zero entropy
or maximal entropy (usually normalized to one), has zero
complexity; these systems are simple and not highly struc-
tured. This line of reasoning further posits that in between
these extremes lies complexity. Those objects that we intu-
itively consider to be complex must involve a continuous
element of newness or novelty (i.e., entropy), but not to such
an extent that the novelty becomes completely unpredictable
and degenerates into mere noise.

In summary, then, it is common practice to require that a
structural complexity measure vanishes in the perfectly or-
dered and perfectly disordered limits. Between these limits,
the complexity is usually assumed to achieve a maximum.
These requirements are often taken as axioms from which
one constructs a complexity measure that is a single-valued
function of randomness as measured by, say, entropy. In both
technical and popular scientific literatures, it is not uncom-
mon to find a “complexity” plotted against entropy in merely
schematic form as a sketch of a generic complexity function
that vanishes for extreme values of entropy and achieves a
maximum in a middle re:gion.5’47_49 Several authors, in fact,
have taken these as the only constraints defining
complexity.so_54
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Here we take a different approach: We do not prescribe
how complexity depends on entropy. One reason for this is
that a useful complexity measure needs to do more than sat-
isfy the boundary conditions of vanishing in the high- and
low-entropy limits.”**> In particular, a useful complexity
measure should have an unambiguous interpretation that ac-
counts in some direct way for how correlations are organized
in a system. To that end we consider a well-defined and
frequently used complexity measure, the excess entropy, and
empirically examine its relationship to entropy for a variety
of systems.

B. Complexity-entropy diagrams

The diagnostic tool that will be the focal point for our
studies is the complexity-entropy diagram. Introduced in
Ref. 14, a complexity-entropy diagram plots structural com-
plexity (vertical axis) versus randomness (horizontal axis)
for systems in a given model class. Complexity-entropy dia-
grams allow for a direct view of the complexity-entropy re-
lationship within and across different systems. For example,
one can easily read whether or not complexity is a single-
valued function of entropy.

The complexity and entropy measures that we use cap-
ture a system’s intrinsic computation:19 how a system stores,
organizes, and transforms information. A crucial point is that
these measures of intrinsic computation are properties of the
system’s configurations. They do not require knowledge of
the equations of motion or Hamiltonian, or of system param-
eters (e.g., temperature, dissipation, or spin-coupling
strength) that generated the configurations. Hence, in addi-
tion to the many cases in which they can be calculated ana-
lytically, they can be inductively calculated from observa-
tions of symbolic sequences or configurations.

Thus, a complexity-entropy diagram measures intrinsic
computation in a parameter-free way. This allows for the
direct comparison of intrinsic computation across very dif-
ferent classes since a complexity-entropy diagram expresses
this in terms of common “information-processing” coordi-
nates. As such, a complexity-entropy diagram demonstrates
how much a given resource (e.g., stored information) is re-
quired to produce a given amount of randomness (entropy),
or how much novelty (entropy) is needed to produce a cer-
tain amount of statistical complexity.

Recently, a form of complexity-entropy diagram has
been used in the study of anatomical MRI brain imagf:s.38’57
This work showed that complexity-entropy diagrams give a
reliable way to distinguish between ‘“normal” brains and
those experiencing cortical thinning, a condition associated
with Alzheimer’s disease. Complexity-entropy diagrams
have also recently been used as part of a proposed test to
distinguish chaos from noise.”® Reference 59 calculates
complexity-entropy diagrams for a handful of different com-
plexity measures using the sequences generated by the sym-
bolic dynamics of various chaotic maps.

Historically, one of the motivations behind complexity-
entropy diagrams was to explore the common claim that
complexity achieves a sharp maximum at a well defined
boundary between the order-disorder extremes. This led, for
example, to the widely popularized notion of the “edge of
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chaos,”%%¢ namely, that objects achieve maximum complex-
ity at a boundary between order and disorder. Although these
particular claims have been criticized,®® during the same pe-
riod it was shown that at the onset of chaos complexity does
reach a maximum. Specifically, Ref. 14 showed that the sta-
tistical complexity diverges at the accumulation point of the
period-doubling route to chaos. This led to an analytical
theory that describes exactly the interdependence of com-
plexity and entropy for this universal route to chaos.'® Simi-
larly, another complexity measure, the excess
entropyl’z’ﬁ’lz’18’27’69771 has also been shown to diverge at the
period-doubling critical point.

This latter work gave some hope that there would be a
universal relationship between complexity and entropy—that
some appropriately defined measure of complexity plotted
against an appropriate entropy would have the same func-
tional form for a wide variety of systems. In part, the moti-
vation for this was the remarkable success of scaling and
data collapse for critical phenomena. Data collapse is a phe-
nomena in which certain variables for very different systems
collapse onto a single curve when appropriately rescaled near
the critical point of a continuous phase transition. For ex-
ample, the magnetization and susceptibility exhibit data col-
lapse near the ferromagnet-paramagnet transition. See, for
example, Refs. 72 and 73 for further discussion. Data col-
lapse reveals that different systems, e.g., different materials
with different critical temperatures, possess a deep similarity
despite differences in their details.

The hope, then, was to find a similar universal curve for
complexity as a function of entropy. One now sees that this is
not and, fortunately, cannot be the case. Notwithstanding
special parametrized examples, such as, period-doubling and
other routes to chaos, a wide range of complexity-entropy
relationships exists.'®"*™ This is a point that we will re-
peatedly reinforce in the following.

C. Surveying complexity-entropy diagrams

We will present a survey of the relationships between
structure and randomness for a number of familiar, well stud-
ied systems including deterministic nonlinear and linear sto-
chastic processes and well known models of computation.
The systems we study include maps of the interval, cellular
automata, Ising models in one and two dimensions, Markov
chains, and minimal finite-state machines. To our knowledge,
this is the first such cross-model survey of complexity-
entropy diagrams.

The main conclusion that emerges from our results is
that there is a large range of possible complexity-entropy
behaviors. Specifically, there is not a universal complexity-
entropy curve, there is not a general complexity-entropy
transition, nor is it case that complexity-entropy diagrams for
different systems are even qualitatively similar. These results
give a concrete picture of the very different types of relation-
ship between a system’s rate of information production and
the structural organization which produces that randomness.
This diversity opens up a number of interesting mathematical
questions, and it appears to suggest a new kind of richness in
nature’s organization of intrinsic computation.
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Our exploration of intrinsic computation is structured
as follows: In Sec. II we briefly review several information-
theoretic quantities, most notably the entropy rate and
the excess entropy. In Sec. III we present results for the
complexity-entropy diagrams for a wide range of model sys-
tems. In Sec. IV we discuss our results, make a number of
general comments and observations, and conclude by sum-
marizing.

Il. ENTROPY AND COMPLEXITY MEASURES
A. Information-theoretic quantities

The complexity-entropy diagrams we will examine make
use of two information-theoretic quantities: the excess en-
tropy and the entropy rate. In this section we fix notation and
give a brief but self-contained review of them.

We begin by describing the stochastic process generated
by a system. Specifically, we are interested here in describing
the character of bi-infinite, one-dimensional sequences: §
=...,8,,5.1,50,5;,..., where the S;’s are random variables
that assume values s; in a finite alphabet A. Throughout, we
follow the standard convention that a lower-case letter refers
to a particular value of the random variable denoted by the
corresponding upper-case letter. In the following, the index i
on the S; will refer to either space or time.

A process is, quite simply, the distribution over all pos-

sible sequences generated by a system: P(§). Let P(s") de-
note the probability that a block S[-L =8;Si1---Sis-1 of L con-
secutive symbols takes on the particular values
SisSisls---s8ipr—1 €. A. We will assume that the distribution
over blocks is stationary: P(S)=P(S%,,) for all i, M, and L,
so we will drop the index on the block probabilities. When
there is no confusion, then, we denote by st oa particular
sequence of L symbols, and use P(s%) to denote the probabil-
ity that the particular L-block occurs.

The support of a process is the set of allowed sequences,
i.e., those with positive probability. In the parlance of com-
putation theory, a process’ support is a formal language: the
set of all finite length words that occur at least once in an
infinite sequence.

A special class of processes that we will consider in
subsequent sections are order-R Markov chains. These pro-
cesses are those for which the joint distribution can be con-
ditionally factored into words SR of length R, that is,

P(S)= ... P(ST[SE R P(SERISO P(SEarlSER) - - (D)

In other words, knowledge of the current length-R word is all
that is needed to determine the distribution of future sym-
bols. As a result, the states of the Markov chain are associ-
ated with the AR possible values that can be assumed by a
length-R word.

We now briefly review several central quantities of in-
formation theory that we will use to develop measures of
unpredictability and entropy. For details see any textbook on
information theory, e.g., Ref. 44. Let X be a random variable
that assumes the values x € X, where X is a finite set. The
probability that X assumes the value x is given by P(x). Also,
let Y be a random variable that assumes values y € ).
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The Shannon entropy of the variable X is given by

H[X]=- 2 P(x)log, P(x). )
xeX

The units are given in bits. This quantity measures the un-
certainty associated with the random variable X. Equiva-
lently, H[X] is also the average amount of memory needed to
store outcomes of variable X.

The joint entropy of two random variables, X and Y, is
defined as

> P(xy)log, P(x.y). 3)
xeXye)

H[X,Y]=-

It is a measure of the uncertainty associated with the joint
distribution P(X,Y). The conditional entropy is defined as

> P(x.y)log, P(x]y), (4)
xeXye)

H[X|Y]=-

and gives the average uncertainty of the conditional prob-
ability P(X|Y). That is, H[X|Y] tells us how uncertain, on
average, we are about X, given that the outcome of Y is
known.

Finally, the mutual information is defined as

I[X;Y] = H[X] - H[X|Y]. (5)

It measures the average reduction of uncertainty of one vari-
able due to knowledge of another. If knowing Y on average
reduces uncertainty about X, then it makes sense to say that
Y carries information about X. Note that I[X;Y]=I[Y;X].

B. Entropy growth and entropy rate

With these definitions set, we are ready to develop an
information-theoretic measure of a process’s randomness.
Our starting point is to consider blocks of consecutive vari-
ables. The block entropy is the total Shannon entropy of
length-L sequences,

H(L)=- 2 P(shlog, P(sY), (6)

steAl

where L>0. The sums run over all possible blocks of length
L. We define H(0)=0. The block entropy is a non-
decreasing function of block length, H(L)=H(L-1).

For stationary processes the total Shannon entropy typi-
cally grows linearly with L. That is, for sufficiently large L,
H(L)~ L. This leads one to define the entropy rate /,, as

H(L) o

The units of 4, are bits per symbol. This limit exists for all
stationary sequences (Ref. 44, Chap. 4.2). The entropy rate is
also known as the metric entropy in dynamical systems
theory and is equivalent to the thermodynamic entropy den-
sity familiar from equilibrium statistical mechanics.

The entropy rate can be given an additional interpreta-
tion as follows: First, we define an L-dependent entropy rate
estimate,
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h(L)=H(L)-H(L-1) (8)

=H[SL|SL—I’SL—2’ e 3Sl],

We set /1,,(0)=log,|Al. In other words, (L) is the average
uncertainty of the next variable S;, given that the previous
L-1 symbols have been seen. Geometrically, %,(L) is the
two-point slope of the total entropy growth curve H(L).
Since conditioning on more variables can never increase the
entropy, it follows that ,(L)<h,(L—1). In the L — o limit,
h,(L) is equal to the entropy rate defined above in Eq. (7),

L>0. 9)

hﬂzgﬂhﬂ(L). (10)
Again, this limit exists for all stationary processes.44 Equa-
tion (10) tells us that 2, may be viewed as the irreducible
randomness in a process—the randomness that persists even
after statistics over longer and longer blocks of variables are
taken into account.

C. Excess entropy

The entropy rate gives a reliable and well understood
measure of the randomness or disorder intrinsic to a process.
However, as the introduction noted, this tells us little about
the underlying system’s organization, structure, or correla-
tions. Looking at the manner in which /(L) converges to its
asymptotic value &, however, provides one measure of these
properties.

When observations only over length-L blocks are taken
into account, a process appears to have an entropy rate of
h,(L). This quantity is larger than the true, asymptotic value
of the entropy rate /,,. As a result, the process appears more
random by £,(L)-h,, bits. Summing these entropy overesti-
mates over L, one obtains the excess entropy,l‘z’(”'2

E= > [h,(L)-h,]. (11)
L=1

The units of E are bits. The excess entropy tells us how
much information must be gained before it is possible to
infer the actual per-symbol randomness £,,. It is large if the
system possesses many regularities or correlations that mani-
fest themselves only at large scales. As such, the excess en-
tropy can serve as a measure of global structure or correla-
tion present in the system.

This interpretation is strengthened by noting that the ex-
cess entropy can also be expressed as the mutual information
between two adjacent semi-infinite blocks of variables,'**’

E=lm I[S_;,S_;.1,5_1:80,8, --- ;1] (12)
L—w

Thus, the excess entropy measures one type of memory of
the system; it tells us how much knowledge of one half of
the system reduces our uncertainty about the other half. If the
sequence of random variables is a time series, then E is the
amount of information the past shares with the future.

The excess entropy may also be given a geometric inter-
pretation. The existence of the entropy rate suggests that
H(L) grows linearly with L for large L and that the growth

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://cha.aip.org/cha/copyright.jsp



043106-5 Organization of intrinsic computation
rate, or slope, is given by &,,. It is then possible to show that

the excess entropy is the “y-intercept” of the asymptotic
form for H(L),26:18394075

H(L) ~E+h,L, asL— . (13)
Or, rearranging, we have
E= lim[H(L)—hML]. (14)
L—o

This form of the excess entropy highlights another inter-
pretation: E is the cost of amnesia. If an observer has ex-
tracted enough information from a system (at large L) to
predict it optimally (~%,), but suddenly loses all of that
information, the process will then appear more random by an
amount H(L)-h,,L.

To close, note that the excess entropy, originally coined
in Ref. 1, goes by a number of different names, in-
cluding  “stored information;”2 “effective  measure
complexity;”6’8’12’76’77 “complexity;”l&75 “predictive
information;”**° and “reduced Rényi entropy of order
1”77 For recent reviews on excess entropy, entropy con-
vergence in general, and applications of this approach, see
Refs. 22, 27, and 39.

D. Intrinsic information processing coordinates

In the model classes examined below, we shall take the
excess entropy E as our measure of complexity and use the
entropy rate h,, as the randomness measure. The excess en-
tropy E and the entropy rate £, are exactly the two quantities
that specify the large-L asymptotic form for the block
entropy, Eq. (13). The set of all (h,,E) pairs is thus geo-
metrically equivalent to the set of all straight lines with non-
negative slope and intercept. Clearly, a line’s slope and in-
tercept are independent quantities. Thus, there is no a priori
reason to anticipate any relationship between 4, and E, a
point emphasized by Li.'®

It is helpful in the following to know that for binary
order-R Markov processes there is an upper bound on the
excess entropy,

E<R(1-h,). (15)

We sketch a justification of this result here; for the deriva-
tion, see Ref. 27, Proposition 11. First, recall that the excess
entropy may be written as the mutual information between
two semi-infinite blocks, as indicated in Eq. (12). However,
given the process is order-R Markovian, Eq. (1), the excess
entropy reduces to the mutual information between two ad-
jacent R-blocks. From Eq. (5), we see that the excess entropy
is the entropy of an R-block minus the entropy of an R-block
conditioned on its neighboring R-block,

E =H(R) - H[SF|SF .]. (16)

(Note that this only holds in the special case of order-R Mar-
kov processes. It is not true in general.) The first term on the
right-hand side of Eq. (16) is maximized when the distribu-
tion over the R-block is uniform, in which case H(R)=R. The
second term on the right-hand side is minimized by assuming
that the conditional entropy of the two blocks is given simply
by Rh,, i.e., R times the per-symbol entropy rate /,,. In other
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words, we obtain a lower bound by assuming that the process
is independent, identically distributed over R-blocks. Com-
bining the two bounds gives Eq. (15).

It is also helpful in the following to know that for peri-
odic processes /1, =0 (perfectly predictable) and E=log, p,
where p is the period.27 In this case, E is the amount of
information required to distinguish the p phases of the cycle.

E. Calculating complexities and entropies

As is now clear, all quantities of interest depend on
knowing sequence probabilities P(s"). These can be obtained
by direct analytical approximation given a model or by nu-
merical estimation via simulation. Sometimes, in special
cases, the complexity and entropy can be calculated in closed
form.

For some, but not all of the process classes studied in the
following, we estimate the various information-theoretic
quantities by simulation. We generate a long sequence, keep-
ing track of the frequency of occurrence of words up to some
finite length L. The word counts are stored in a dynamically
generated parse tree, allowing us to go out to L=120 in some
cases. We first make a rough estimate of the topological en-
tropy using a small L value. This entropy determines the
sparseness of the parse tree, which in turn determines how
large a tree can be stored in a given amount of memory.
From the word and subword frequencies P(s*), one directly
calculates H(L) and, subsequently, /&, and E. Estimation er-
rors in these quantities are a function of statistical errors in
P(sh).

Here, we are mainly interested in gaining a general sense
of the behavior of the entropy rate ,, and the excess entropy
E. And so, for the purposes of our survey, this direct method
is sufficient. The vast majority of our estimates are accurate
to at least 1%. If extremely accurate estimates are needed,
there exist a variety of techniques for correcting for estimator
bias.**®° When one is working with finite data, there is also
the question of what errors occur, since the L — o limit can-
not be taken. For more on this issue, see Ref. 27.

Regardless of these potential subtleties, the entropy rate
and excess entropy can be reliably estimated via simulation,
given access to a reasonably large amount of data. Moreover,
this estimation is purely inductive—one does not need to use
knowledge of the underlying equations of motion or the hid-
den states that produced the sequence. Nevertheless, for sev-
eral of the model classes we consider—one-dimensional
Ising models, Markov chains, and topological Markov
chains—we calculate the quantities using closed-form ex-
pressions, leading essentially to no error.

lll. COMPLEXITY-ENTROPY DIAGRAMS

In the following sections we present a survey of intrinsic
computation across a wide range of process classes. We think
of a class of systems as given by equations of motion, or
other specification for a stochastic process, that are param-
etrized in some way—a pair of control parameters in a one-
dimensional map or the energy of a Hamiltonian. The space
of parameters, then, is the concrete representation of the
space of possible systems, and a class of system is a subset
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of the set of all possible processes. A point in the parameter
space is a particular system whose intrinsic computation we
will summarize by a pair of numbers—one a measure of
randomness, the other a measure of structure. In several
cases, these measures are estimated from sequences gener-
ated by the temporal or spatial process.

A. One-dimensional discrete iterated maps

Here we look at the symbolic dynamics generated by
two iterated maps of the interval—the well studied logistic
and tent maps—of the form,

Xl :f,u.(xn) s (17)

where w is a parameter that controls the nonlinear function f,
x, €[0,1], and one starts with x, the initial condition. The
logistic and tent maps are canonical examples of systems
exhibiting deterministic chaos. The nonlinear iterated func-
tion f consists of two monotone pieces. So, one can analyze
the maps’ behavior on the interval via a generating partition
that reduces a sequence of continuous states x(,x;,X;,... to a
binary sequence s, s ,sz,....86 The binary partition is given

0=

S;i= . (18)
1 x>

The binary sequence may be viewed as a code for the set of
initial conditions that produce the sequence. When the maps
are chaotic, arbitrarily long binary sequences produced using
this partition code for arbitrarily small intervals of initial
conditions on the chaotic attractor. Hence, one can explore
many of these maps’ properties via binary sequences.

1. Logistic map
We begin with the logistic map of the unit interval,

J&)=rx(1-x), (19)

where the control parameter r € [0,4]. We iterate this start-
ing with an arbitrary initial condition x, € [0,1]. In Fig. 1 we
show numerical estimates of the excess entropy E and the
entropy rate /1, as a function of r. Notice that both E and £,
change in a complicated manner as the parameter r is varied
continuously.

As r increases from 3.0 to approximately 3.5926, the
logistic map undergoes a series of period-doubling bifurca-
tions. For r e (3.0,3.2361) the sequences generated by the
logistic map are periodic with period two, for r
€ (3.2361,3.4986) the sequences are period 4, and for r
€ (3.4986,3.5546) the sequences are period 8. For all peri-
odic sequences of period p, the entropy rate 4, is zero and
the excess entropy E is log, p. So, as the period doubles, the
excess entropy increases by one bit. This can be seen in the
staircase on the left-hand side of Fig. 1. At r=3.5926, the
logistic map becomes chaotic, as evidenced by a positive
entropy rate. For further discussion of the phenomenology of
the logistic map, see almost any modern textbook on nonlin-
ear dynamics, e.g., Refs. 87 and 88.
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FIG. 1. (Color) Excess entropy E and entropy rate /,, as a function of the
parameter r. The top curve is excess entropy. The r values were sampled
uniformly as r was varied from 3.4 to 4.0 in increments of 0.0001. The
largest L used was L=30 for systems with low entropy. For each parameter
value with positive entropy, 1 X 107 words of length L were sampled.

Looking at Fig. 1, it is difficult to see how E and £, are
related. This relationship can be seen much more clearly in
Fig. 2, in which we show the complexity-entropy diagram
for the same system. That is, we plot (,,E) pairs. This lets
us look at how the excess entropy and the entropy rate are
related, independent of the parameter r.

Figure 2 shows that there is a definite relationship be-
tween E and h,—one that is not immediately evident from
looking at Fig. 1. Note, however, that this relationship is not
a simple one. In particular, complexity is not a function of
entropy: E# g(h,). For a given value of &, multiple excess
entropy values E are possible.

There are several additional empirical observations to
extract from Fig. 2. First, the shape appears to be self-
similar. This is not at all surprising, given that the logistic

6
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FIG. 2. (Color) Entropy rate and excess entropy (/,,, E)-pairs for the logistic
map. Points from regions of the map in which the bifurcation diagram has
one or two (or more) bands are colored differently. There are 3214 param-
eter values sampled for the one-band region and 3440 values for the two-
band region. The r values were sampled uniformly. The one-band region is
r e (3.6786,4.0); the two-band region is r € (3.5926,3.6786). The largest L
used was L=30 for systems with low entropy. For each parameter value with
positive entropy, 1X 107 words of length L were sampled.
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FIG. 3. Excess entropy E vs entropy density /,, for the tent map. The L used
to estimate P(s"), and so E and h > varied depending on the a parameter.
The largest L used was L=120 at low ,,. The plot shows 1200 (/,,, E)-pairs.
The parameter was incremented every Aa=5X 107 for a € [1,1.2] and then
incremented every Aa=0.001 for a €[1.2,2.0]. For each parameter value
with positive entropy, 107 words of length L were sampled.

map’s bifurcation diagram itself is self-similar. Second, note
the clumpy, nonuniform clustering of (%,,,E) pairs within the
dense region. Third, note that there is a fairly well defined
lower bound. Fourth, for a given value of the entropy rate &,
there are many possible values for the excess entropy E.
However, it appears as if not all E values are possible for a
given h,. Lastly, note that there does not appear to be any
phase transition (at finite /2,,) in the complexity-entropy dia-
gram. Strictly speaking, such a transition does occur, but it
does so at zero entropy rate. As the period doubling accumu-
lates, the excess entropy grows without bound. As a result,
the possible excess entropy values at h,=0 on the
complexity-entropy diagram are unbounded. For further dis-
cussion, see Ref. 16.

2. Tent map
We next consider the tent map,
ax x < %
flx)= , (20)

1
a(l-x) x=3

where a €[0,2] is the control parameter. For a € [1,2], the
entropy rate /,=log, a; when a€[0,1], h,=0. Figure 3
shows 1200 (h,,,E)-pairs in which E is calculated numeri-
cally from empirical estimates of the binary word distribu-
tion P(s%).

Reference 16 developed a phenomenological theory that
explains the properties of the tent map at the so-called band-
merging points, where bands of the chaotic attractor merge
pairwise as a function of the control parameter. The behavior
at these points is noisy periodic—the order of band visita-
tions is periodic, but motion within is deterministic chaotic.
Band mergings occur a=22".The symbolic-dynamic process
is described by a Markov chain consisting of a periodic cycle
of 2" states in which all state-to-state transitions are non-
branching except for one where s5;=0 or s;=1 with equal
probability. Thus, each phase of the Markov chain has zero
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entropy per transition, except for the one that has a branching
entropy of 1 bit. The entropy rate at band-mergings is thus
h,u=2‘”, with n an integer.

The excess entropy for the symbolic-dynamic process at
the 2"-to-2"~! band-merging is simply E=1log, 2"=n. That is,
the process carries n bits of phase information. Putting these
facts together, then, we have a very simple relationship in the
complexity-entropy diagram at band-mergings,

E=-log, h,. (21)

This is graphed as the dashed line in Fig. 3. It is clear that the
entire complexity-entropy diagram is much richer than this
simple expression indicates. Nonetheless, Eq. (21) does cap-
ture the overall shape quite well.

Note that, in sharp contrast to the logistic map, for the
tent map the excess entropy takes on only a single value for
each value of the entropy rate h,. The reason for this is
straightforward. The entropy rate £, is a simple monotonic
function of the parameter a (h,=log; a), and so there is a
one-to-one relationship between them. As a result, each 4,
value on the complexity-entropy diagram corresponds to one
and only one value of a and, in turn, corresponds to one and
only one value of E. Interestingly, the excess entropy appears
to be a continuous function of & s although not a differen-
tiable one.

B. Ising spin systems

We now investigate the complexity-entropy diagrams of
the Ising model in one and two spatial dimensions. Ising
models are among the simplest physical models of spatially
extended systems. Originally introduced to model magnetic
materials, they are now used to model a wide range of coop-
erative phenomena and order-disorder transitions and, more
generally, are viewed as generic models of spatially ex-
tended, statistical mechanical systems.gg’90 Like the logistic
and tent maps, Ising models are also studied as an intrinsi-
cally interesting mathematical topic. As we will see, Ising
models provide a useful contrast with the intrinsic computa-
tion seen in the interval maps.

Specifically, we consider spin-1/2 Ising models with
nearest (NN) and next-nearest neighbor (NNN) interactions.
The Hamiltonian (energy function) for such a system is

H=—J1 E SiSj_JZ E S[Sj—BES[, (22)

<iV.j>nn <i*j>mm i

where the first (second) sum is understood to run over all NN
(NNN) pairs of spins. In one dimension, a spin’s nearest-
neighbors will consist of two spins, one to the right and one
to the left, whereas in two dimensions a spin will have four
nearest neighbors—Ieft, right, up, and down. Each spin S, is
a binary variable, S; € {~1, + 1}. The coupling constant J; is a
parameter that when positive (negative) makes it energeti-
cally favorable for NN spins to (anti-)align. The constant J,
has the same effect on NNN spins. The parameter B may be
viewed as an external field; its effect is to make it energeti-
cally favorable for spins to point up (i.e., have a value of +1)
instead of down. The probability of a configuration is taken
to be proportional to its Boltzmann weight; the probability of
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FIG. 4. Complexity-entropy diagram for the one-dimensional, spin-1/2 an-
tiferromagnetic Ising model with nearest- and next-nearest-neighbor inter-
actions. 10° system parameters were sampled randomly from the following
ranges: J, €[-8,0], J, € [-8,0], T €[0.05,6.05], and B €[0,3]. For each
parameter setting, the excess entropy E and entropy density %, were calcu-
lated analytically.

a spin configuration C is proportional to e A€ where B
=1/T is the inverse temperature.

In equilibrium statistical mechanics, the entropy density
is a monotonic increasing function of the temperature. Quite
generically, a plot of the entropy /,, as a function of tempera-
ture T resembles that of the top plot in Fig. 6 shown below.
Thus, h, may be viewed as a nonlinearly rescaled tempera-
ture. One might ask, then, why one might want to plot com-
plexity versus entropy: Is a plot of complexity versus tem-
perature qualitatively the same? Indeed, the two plots would
look very similar. However, there are two major benefits of
complexity-entropy diagrams for statistical mechanical sys-
tems. First, the entropy captures directly the system’s unpre-
dictability, measured in bits per spin. The entropy thus mea-
sures the system’s information processing properties.
Second, plotting complexity versus entropy and not tempera-
ture allows for a direct comparison of the range of informa-
tion processing properties of statistical mechanical systems
with systems for which there is not a well defined tempera-
ture, such as the deterministic dynamical systems of the pre-
vious section or the cellular automata of the subsequent one.

1. One-dimensional Ising system

We begin by examining one-dimensional Ising systems.
In Refs. 25, 74, and 91 two of the authors developed exact,
analytic transfer-matrix methods for calculating %, and E in
the thermodynamic (N — o) limit. These methods make use
of the fact the NNN Ising model is order-2 Markovian.
We used these methods to produce Fig. 4, the complexity-
entropy diagram for the NNN Ising system with antiferro-
magnetic coupling constants J; and J, that tend to anti-align
coupled spins. The figure gives a scatter plot of 10° (h,,E)
pairs for system parameters that were sampled randomly
from the following ranges: J, [-8,0], J,[-8,0], T
€[0.05,6.05], and B €[0,3]. For each parameter realization,
the excess entropy E and entropy density &, were calculated.
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Fig. 4 is rather striking—the (%, E) pairs are organized in
the shape of a “bat cape.” Why does the plot have this form?

Recall that if a sequence over a binary alphabet is peri-
odic with period p, then E=log, p and h,=0. Thus, the
“tips” of the bat cape at ,=0 correspond to crystalline (pe-
riodic) spin configurations with periods 1, 2, 3, and 4. For
example, the (0, 0) point is the period-1 configuration with
all spins aligned. These periodic regimes correspond to the
system’s different possible ground states. As the entropy den-
sity increases, the cape tips widen and eventually join.

Figure 4 demonstrates in graphical form that there is
organization in the process space defined by the Hamiltonian
of Eq. (22). Specifically, for antiferromagnetic couplings, E
and h,, values do not uniformly fill the plane. There are for-
bidden regions in the complexity-entropy plane. Adding ran-
domness (%) to the periodic ground states does not imme-
diately destroy them. That is, there are low-entropy states
that are almost-periodic. The apparent upper linear bound is
that of Eq. (15) for an order-2 Markov chain, E<2-2h,,.

In contrast, in the logistic map’s complexity-entropy dia-
gram (Fig. 2) one does not see anything remotely like the bat
cape. This indicates that there are no low-entropy, almost-
periodic configurations related to the exactly periodic con-
figurations generated at zero-entropy along the period-
doubling route to chaos. Increasing the parameter there does
not add randomness to a periodic orbit. Rather, it causes a
system bifurcation to a higher-period orbit.

2. Two-dimensional Ising model

Thus far we have considered only one-dimensional sys-
tems, either temporal or spatial. However, the excess entropy
can be extended to apply to two-dimensional configurations
as well; for details, see Ref. 92. Using methods from there,
we calculated the excess entropy and entropy density for the
two-dimensional Ising model with nearest- and next-nearest-
neighbor interactions. In other words, we calculated the
complexity-entropy diagram for the two-dimensional version
of the system whose complexity-entropy diagram is shown
in Fig. 4. There are several different definitions for the ex-
cess entropy in two dimensions, all of which are similar but
not identical. In Fig. 4 we used a version that is based on the
mutual information and, hence, is denoted E,.92

Figure 5 gives a scatter plot of 4500 complexity-entropy
pairs. System parameters in Eq. (22) were sampled randomly
from the following ranges: J,€[-3,0], J,e[-3,0],
T €[0.05,4.05], and B=0. For each parameter setting, the
excess entropy E; and entropy density 4, were estimated
numerically; the configurations themselves were generated
via a Monte Carlo simulation. For each (h,,E) point the
simulation was run for 200 000 Monte Carlo updates per site
to equilibrate. Configuration data were then taken for 20 000
Monte Carlo updates per site. The lattice size was a square of
48 X 48 spins. The long equilibration time is necessary be-
cause, for some Ising models at low temperature, single-spin
flip dynamics of the sort used here have very long transient
times.”>*

Note the similarity between Figs. 4 and 5. For the
2D model, there is also a near-linear upper bound:
E<5(1-h,). In addition, one sees periodic spin configura-
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FIG. 5. Complexity-entropy diagram for the two-dimensional, spin-1/2 an-
tiferromagnetic Ising model with nearest- and next-nearest-neighbor inter-
actions. System parameters were sampled randomly from the following
ranges: J, € [-3,0], J, €[-3,0], T€[0.05,4.05], and B=0. For each pa-
rameter setting, the excess entropy E; and entropy density &, were estimated
numerically.

tions, as evidenced by the horizontal bands. An E; of 1 bit
corresponds to a checkerboard of period 2; E;=3 corre-
sponds to a checkerboard of period 4; while E;=2 corre-
sponds to a “staircase” pattern of period 4. See Ref. 92 for
illustrations. The two period-4 configurations are both
ground states for the model in the parameter regime in which
|[/,]<|J;| and J,<0. At low temperatures, the state into
which the system settles is a matter of chance.

Thus, the horizontal streaks in the low-entropy region of
Fig. 5 are the different ground states possible for the system.
In this regard Fig. 5 is qualitatively similar to Fig. 4—in each
there are several possible ground states at 71, =0 that persist
as the entropy density is increased. However, in the two-
dimensional system of Fig. 5 one sees a scatter of other
values around the periodic bands. There are even E; values
larger than 3. These E; values arise when parameters are
selected in which the NN and NNN coupling strengths are
similar; J; = J,. When this is the case, there is no energy cost
associated with a horizontal or vertical defect between the
two possible ground states. As a result, for low temperatures
the system effectively freezes into horizontal or vertical
strips consisting of the different ground states. Depending on
the number of strips and their relative widths, a number of
different E; values are possible, including values well above
3, indicating a very complex spatial structure.

Despite these differences, the similarities between the
complexity-entropy plots for the one- and two-dimensional
systems are clearly evident. This is all the more noteworthy
since one- and two-dimensional Ising models are regarded as
very different sorts of system by those who focus solely on
phase transitions. The two-dimensional Ising model has a
critical phase transition while the one-dimensional does not.
And, more generally, two-dimensional random fields are
generally considered very different mathematical entities
than one-dimensional sequences. Nevertheless, the two

Chaos 18, 043106 (2008)

complexity-entropy diagrams show that, away from critical-
ity, the one- and two-dimensional Ising systems’ ranges of
intrinsic computation are similar.

3. Ising model phase transition

As noted above, the two-dimensional Ising model is well
known as a canonical model of a system that undergoes a
continuous phase transition—a discontinuous change in the
system’s properties as a parameter is continuously varied.
The 2D NN Ising model with ferromagnetic (J,>0) bonds
and no NNN coupling (J,=0) and zero external field (B=0)
undergoes a phase transition at 7=7,~2.269 when J,=1. At
the critical temperature T, the free energy is nonanalytic and
the magnetic susceptibility and specific heat both diverge. In
Fig. 5 we restricted ourselves to antiferromagnetic couplings
and thus did not sample in the region of parameter space in
which the phase transition occurs.

What happens if we fix J;=1, J,=0, and B=0, and vary
the temperature? In this case, we see that the complexity, as
measured by E, shows a sharp maximum near the critical
temperature 7. Figure 6 shows results obtained via a Monte
Carlo simulation on a 100X 100 lattice. We used a Wolff
cluster algorithm and periodic boundary conditions. After
10% Monte Carlo steps (one step is one proposed cluster flip),
25 000 configurations were sampled, with 200 Monte Carlo
steps between measurements. This process was repeated for
over 200 temperatures between 7=0 and 7=6. More tem-
peratures were sampled near the critical region.

In Fig. 6 we first plot entropy density &, and excess
entropy E versus temperature. As expected, the excess en-
tropy reaches a maximum at the critical temperature 7. At 7',
the correlations in the system decay algebraically, whereas
they decay exponentially for all other 7, values. Hence, E,
which may be viewed as a global measure of correlation, is
maximized at 7. For the system of Fig. 6, T,. appears to have
an approximate value of 2.42. This is above the exact value
for an infinite system, which is 7.~2.27. Our estimated
value is higher, as one expects for a finite lattice. At the
critical temperature, h M~0.57, and E~=0.413.

Also in Fig. 6 we show the complexity-entropy diagram
for the 2D Ising model. This complexity-entropy diagram is
a single curve, instead of the scatter plots seen in the previ-
ous complexity-entropy diagrams. The reason is that we var-
ied a single parameter, the temperature, and entropy is a
single-valued function of the temperature, as can clearly be
seen in the first plot in Fig. 6. Hence, there is only one value
of h, for each temperature, leading to a single curve for the
complexity-entropy diagram.

Note that the peak in the complexity-entropy diagram for
the 2D Ising model is rather rounded, whereas E plotted
versus temperature shows a much sharper peak. The reason
for this rounding is that the entropy density 4, changes very
rapidly near T,.. The effect is to smooth the E curve when
plotted against £,,.

A similar complexity-entropy was produced by Arnold.”
He also estimated the excess entropy, but did so by consid-
ering only one-dimensional sequences of measurements ob-
tained at a single site, while a Monte Carlo simulation gen-
erated a sequence of two-dimensional configurations. Thus,
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FIG. 6. Entropy rate vs temperature, excess entropy vs temperature, and the
complexity-entropy diagram for the 2D NN ferromagnetic Ising model.
Monte Carlo results for 200 temperatures between 0 and 6. The temperature
was sampled more densely near the critical temperature. For further discus-
sion, see text.

those results do not account for the two-dimensional struc-
ture but, rather, reflect properties of the dynamics of the par-
ticular Monte Carlo updating algorithm used. Nevertheless,
the results of Ref. 75 are qualitatively similar to ours.

Erb and Ay96 have calculated the multi-information for
the two-dimensional Ising model as a function of tempera-
ture. The multi-information is the difference between the en-
tropy rate and the entropy of a single site: H(1)~/,,. That is,
the multi-information is only the leading term in the sum

Chaos 18, 043106 (2008)

35

257t

15

Excess Entropy E

05t

0 0.2 0.4 0.6 0.8 1
Entropy Density hu

FIG. 7. Spatial entropy density /,, and spatial excess entropy E for a ran-
dom sampling of 10° r=2, binary 1D CAs.

which defines the excess entropy, Eq. (11). (Recall that
h,(1)=H(1).) They find that the multi-information is a con-
tinuous function of the temperature and that it reaches a
sharp peak at the critical temperature (see Ref. 96, Fig. 4).

C. Cellular automata

The next process class we consider is cellular automata
(CAs) in one and two spatial dimensions. Like spin systems,
CAs are common prototypes used to model spatially ex-
tended dynamical systems. For reviews see, e.g., Refs.
97-99. Unlike the Ising models of the previous section, the
CAs that we study here are deterministic. There is no noise
or temperature in the system.

The states of the CAs we shall consider consist of one-
or two-dimensional configurations s=.. s g0 st L of dis-
crete K-ary local states s'€{0,1,...,K—1}. The configura-
tions change in time according to a global update function ®,

Si1=Ps;, (23)

starting from an initial configuration s,. What makes CAs
cellular is that configurations evolve according to a local
update rule. The value s, | of site i at the next time step is a
function ¢ of the site’s previous value and the values of
neighboring sites within some radius r,

Sy = PlsT sy
All sites are updated synchronously. The CA update rule ¢
consists of specifying the output value s,,; for all possible
neighborhood configurations 7,=s/™"...,s’...,s/*". Thus, for
1D radius-r CAs, there are K>'*! possible neighborhood con-
figurations and 2K possible CA rules. The r=1, K=2 1D
CAs are called elementary cellular automata.”’

In all CA simulations reported we began with an arbi-
trary random initial configuration s, and iterated the CA sev-
eral thousand times to let transient behavior die away. Con-
figuration statistics were then accumulated for an additional
period of thousands of time steps, as appropriate. Periodic
boundary conditions on the underlying lattice were used.

In Fig. 7 we show the complexity-entropy diagram for

AN (24)
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ID, r=2, K=2 (binary) cellular automata. There are 22
~4.3%10° such CAs. We cannot examine all 4.3 billion
CAs; instead we sample the space these CAs uniformly. For
the data of Fig. 7, the lattice has 5 X 10* sites and a transient
time of 5 X 10* iterations was used. We plot &  versus E for
spatial sequences. Plots for the temporal sequences are quali-
tatively similar. There are several things to observe in these
diagrams.

One feature to notice in Fig. 7 is that no sharp peak in
the excess entropy appears at some intermediate 4, value. In
contrast, the maximum possible excess entropy falls off
moderately rapidly with increasing /,,. A linear upper bound,
E<4(1-h,), is almost completely respected. Note that, as is
the case with the other complexity-entropy diagrams pre-
sented here, for all & “ values except & u=1 there is a range of
possible excess entropies.

In the early 1990s there was considerable exploration of
the organization of CA rule space. In particular, a series of
papersﬁz’loo_102 looked at two-dimensional eight-state (K
=8) cellular automata, with a neighborhood size of 5 sites—
the site itself and its nearest neighbor to the north, east, west,
and south. These references reported evidence for the exis-
tence of a phase transition in the complexity-entropy dia-
gram at a critical entropy level. In contrast, however, here
and in the previous sections we find no evidence for such a
transition. The reasons that Refs. 62 and 100-102 report a
transition, are twofold. First, they used very restricted mea-
sures of randomness and complexity: entropy of single iso-
lated sites and mutual information of neighboring pairs of
single sites, respectively. These choices have the effect of
projecting organization onto their complexity-entropy dia-
grams. The organization seen is largely a reflection of con-
straints on the chosen measures, not of intrinsic properties of
the CAs. Second, they do not sample the space of CAs uni-
formly; rather, they parametrize the space of CAs and sample
only by sweeping their single parameter. This results in a
sample of CA space that is very different from uniform and
that is biased toward higher complexity CAs. For a further
discussion of complexity-entropy diagrams for cellular au-
tomata, including a discussion of Refs. 62 and 100-102, see
Ref. 103.

D. Markov chain processes

In this and the next section, we consider two classes of
processes that provide a basis of comparison for the preced-
ing nonlinear dynamics and statistical mechanical systems:
those generated by Markov chains and topological
e-machines. These classes are complementary to each other
in the following sense. Topological e-machines represent
structure in terms of which sequences (or configurations) are
allowed or not. When we explore the space of topological
e-machines, the associated processes differ in which sets of
sequences occur and which are forbidden. In contrast, when
exploring Markov chains, we fix a set of allowed words—in
the present case the full set of binary sequences—and then
vary the probability with which subwords occur. These two
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FIG. 8. Excess-entropy, entropy-rate pairs for 10° randomly selected 4-state
Markov chains.

classes thus represent two different possible origins of orga-
nization in intrinsic computation—types that were mixed in
the preceding example systems.

In Fig. 8 we plot E versus £, for order-2 (4-state) Mar-
kov chains over a binary alphabet. Each element in the sto-
chastic transition matrix 7 is chosen uniformly from the unit
interval. The elements of the matrix are then normalized row
by row so that 2;7;;=1. We generated 10° such matrices and
formed the complexity-entropy diagram shown in Fig. 8.
Since these processes are order-2 Markov chains, the bound
of Eq. (15) applies. This bound is the sharp, linear upper
limit evident in Fig. 8: E=2-24h,,.

It is illustrative to compare the 4-state Markov chains
considered here with the 1D NNN Ising models of Sec.
III B 1. The order-2 (or 4-state Markov) chains with a binary
alphabet are those systems for which the value of a site de-
pends on the previous two sites, but no others. In terms of
spin systems, then, this is a spin-1/2 (i.e., binary) system
with nearest- and next-nearest neighbor interactions. The
transition matrix for the Markov chain is 4 X 4 and thus has
16 elements. However, since each row of the transition ma-
trix must be normalized, there are 12 independent parameters
for this model class. In contrast, there are only 3 independent
parameters for the 1D NNN Ising chain—the parameters J,
J>, B, and the temperature 7. One of the parameters may be
viewed as setting an energy scale, so only three are indepen-
dent.

Thus, the 1D NNN systems are a proper subset of the
4-state Markov chains. Note that their complexity-entropy
diagrams are very different, as a quick glance at Figs. 4 and
8 confirms. The reason for this is that the Ising model, due to
its parametrization (via the Hamiltonian of Eq. (22)),
samples the space of processes in a very different way than
the Markov chains. This underscores the crucial role played
by the choice of model and, so too, the choice in parametriz-
ing a model space. Different parametrizations of the same
model class, when sampled uniformly over those parameters,
yield complexity-entropy diagrams with different structural
properties.
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E. The space of processes: Topological e-machines

The preceding model classes are familiar from dynami-
cal systems theory, statistical mechanics, and stochastic pro-
cess theory. Each has served an historical purpose in their
respective fields—purposes that reflect mathematically,
physically, or statistically useful parametrizations of the
space of processes. In the preceding sections we explored
these classes, asked what sort of processes they could gener-
ate, and then calculated complexity-entropy pairs for each
process to reveal the range of possible information process-
ing within each class.

Is there a way, though, to directly explore the space of
processes, without assuming a particular model class or pa-
rametrization? Can each process be taken at face value and
tell us how it is structured? More to the point, can we avoid
making structural assumptions, as done in the preceding sec-
tions?

Affirmative answers to these questions are found in the
approach laid out by computational mechanics.'*'*?* Com-
putational mechanics demonstrates that each process has an
optimal, minimal, and unique representation—the
e-machine—that captures the process’s structure. Due to op-
timality, minimality, and uniqueness, the e-machine may be
viewed as the representation of its associated process. In this
sense, this representation is parameter free. To determine an
e-machine for a process one calculates a set of causal states
and their transitions. In other words, one does not specify a
priori the number of states or the transition structure between
them. Determining the e-machine makes no such structural
assumptions.19’28

Using the one-to-one relationship between processes and
their e-machines, here we invert the preceding logic of going
from a process to its e-machine. We explore the space of
processes by systematically enumerating e-machines and
then calculating their excess entropies E and their entropy
rates h,. This gives a direct view of how intrinsic computa-
tion is organized in the space of processes.

As a complement to the Markov chain exploration of
how intrinsic computation depends on transition probability
variation, here we examine how an e-machine’s structure
(states and their connectivity) affects information processing.
We do this by restricting attention to the class of topological
e-machines whose branching transition probabilities are fair
(equally probable). An example is shown in Fig. 10 below.

If we regard two e-machines isomorphic up to variation
in transition probabilities as members of a single equivalence
class, then each such class of e-machines contains precisely
one topological e-machine. Symbolic dynamics104 refers to a
related class of representations as topological Markov chains.
An essential, and important, difference is that e-machines
always have the smallest number of states.

It turns out that the topological e-machines with a finite
number of states can be systematically enumerated.'”
Here we consider only e-machines for binary processes:
A={0,1}. Two e-machines are isomorphic and generate es-
sentially the same stochastic process, if they are related by a
relabeling of states or if their output symbols are exchanged:
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TABLE I. The number of topological binary e-machines up to n=5 causal
states (after Ref. 105).

Causal states Topological
n e-machines

3

7

78
1388
35186

[ I VS I S R

0 is mapped to 1 and vice versa. The number of isomorphi-
cally distinct topological e-machines of n=1,...,5 states is
listed in Table I.

In Fig. 9 we plot their (h,,,E) pairs. There one sees that
the complexity-entropy diagram exhibits quite a bit of orga-
nization, with variations from very low to very high density
of e-machines coexisting with several distinct vertical (iso-
entropy) families. To better understand the structure in the
complexity-entropy diagram, though, it is helpful to consider
bounds on the complexities and entropies of Fig. 9. The
minimum complexity, E=0, corresponds to machines with
only a single state. There are two possibilities for such binary
e-machines. Either they generate all 1s (or Os) or all se-
quences occurring with equal probability (at each length). If
the latter, then & p=1 if the former, h »=0. These two points,
(0, 0) and (1, 0), are denoted with solid circles along the
horizontal axis of Fig. 9.

The maximum E in the complexity-entropy diagram is
log, 5=2.3219. One such e-machine corresponds to the
zero-entropy, period-5 processes. And there are four similar
processes with periods p=1,2,3,4 at the points (0,log, p).
These are denoted on the figure by the tokens along the left
vertical axis.

2.5
u .
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. :il 1
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Lcr ® 1
* 5 State
¢ ¢ 4 State
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FIG. 9. (Color) Complexity-entropy pairs (4,,E) for all topological binary
e-machines with n=1,...,4 states and for 35041 of the 35 186 5-state
e-machines. The excess entropy is estimated as E(L)=H(L)—Lh” using the
exact value for the entropy rate /2, and a storage-efficient type-class algo-
rithm (Ref. 106) for the block entropy H(L). The estimates were made by
increasing L until E(L)-E(L-1) < &, where §=0.0001 for 1, 2, and 3 states;
6=0.0050 for 4 states; and 6=0.0100 for 5 states.
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FIG. 10. An example topological e-machine for a cyclic process in Fs ;.
Note that branching occurs only between pairs of successive states in the
cyclic chain. The excess entropy for this process is log, 5=~2.32, and the
entropy rate is 3/5.

There are other period-5 cyclic, partially random pro-
cesses with maximal complexity, though: those with causal
states in a cyclic chain. These have b=1,2,3,4 branching
transitions between successive states in the chain and posi-
tive entropy. These appear as a horizontal line of enlarged
square tokens along in the upper portion of the complexity-
entropy diagram. Denote the family of p-cyclic processes
with b branchings as F,,. An e-machine illustrating Fs 3 is
shown in Fig. 10. The excess entropy for this process is
log, 5=2.32, and the entropy rate is 3/5.

Since e-machines for cyclic processes consist of states in
a single loop, their excess entropies provide an upper bound
among e-machines that generate p-cyclic processes with b
branching states, namely,

E(F)) =log,(p). (25)

Clearly, E(F, ) — % as p— . Their entropy rates are given
by a similarly simple expression,

b
h(F,p) = ; (26)

Note that h,(F,,)—0 as p—o with fixed b and
h,(F,;)—1 as b— p. Together, then, the family Fs, gives
an upper bound to the complexity-entropy diagram.

The processes F,, are representatives of the highest
points of the prominent jutting vertical towers of e-machines
so prevalent in Fig. 9. It therefore seems reasonable to expect
the (h,,,E) coordinates for p-cyclic process languages to pos-
sess at least p—1 vertical towers, distributed evenly at 4,
=b/p, b=1,...,p—1, and for these towers to correspond
with towers of m-cyclic process languages whenever m is a
multiple of p.

These upper bounds are one key difference from earlier
classes in which there was a decreasing linear upper bound
on complexity as a function of entropy rate, E<R(1-#,).
That is, in the space of processes, many are not so con-
strained. The subspace of topological e-machines illustrates
that there are many highly entropic, highly structured pro-
cesses. Some of the more familiar model classes appear to
inherit, in their implied parametrization of process space, a
bias away from such processes.

It is easy to see that the families 7, ,_; and F,, ; provide
upper and lower bounds for /1, respectively, among the pro-
cess languages that achieve maximal E and for which £,
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>0. Indeed, the smallest positive &, possible is achieved
when only a single of the equally probable states has more
than one outgoing transition.

More can be said about this picture of the space of in-
trinsic computation spanned by topological e-machines.'®
Here, however, our aim is to illustrate how rich the diversity
of intrinsic computation can be and to do so independent of
conventional model-class parametrizations. These results al-
low us to probe in a systematic way a subset of processes in
which structure dominates.

IV. DISCUSSION AND CONCLUSION

Complexity-entropy diagrams provide a common view
of the intrinsic computation embedded in different processes.
We used them to compare markedly different systems: one-
dimensional maps of the unit interval; one- and two-
dimensional Ising models; cellular automata; Markov chains;
and topological e-machines. The exploration of each class
turned different knobs in the sense that we adjusted different
parameters: temperature, nonlinearity, coupling strength, cel-
lular automaton rule, and transition probabilities. Moreover,
these parameters had very different effects. Changing the
temperature and coupling constants in the Ising models al-
tered the probabilities of configurations, but it did not change
which configurations were allowed to occur. In contrast, the
topological e-machines exactly expressed what it means for
different processes to have different sets of allowed se-
quences. Changing the CA rules or the nonlinearity param-
eter in the logistic map combined these effects: the allowed
sequences or the probability of sequences or both changed.
In this way, the survey illustrated in dramatic fashion one of
the benefits of the complexity-entropy diagram: it allows for
a common comparison across rather varied systems.

For example, the complexity-entropy diagram for the
radius-2, one-dimensional cellular automata, shown in Fig. 7,
is very different from that of the logistic map, shown in Fig.
2. For the logistic map, there is a distinct lower bound for the
excess entropy as a function of the entropy rate. In Fig. 2 this
is seen as the large forbidden region at the diagram’s lower
portion. In sharp contrast, in Fig. 7 no such forbidden region
is seen.

At a more general level of comparison, the survey
showed that for a given h,, the excess entropy E can be
arbitrarily small. This suggests that the intrinsic computation
of cellular automata and the logistic map are organized in
fundamentally different ways. In turn, the 1D and 2D Ising
systems exhibit yet another kind of information processing
capability. Each has well defined ground states, seen as the
zero-entropy tips of the “bat capes” in Figs. 4 and 5. These
ground states are robust under small amounts of noise, i.e.,
as the temperature increases from zero. Thus, there are
almost-periodic configurations at low entropy. In contrast,
there do not appear to be any almost-periodic configurations
at low entropy for the logistic map of Fig. 2.

Our last example, topological e-machines, was a rather
different kind of model class. In fact, we argued that it gave
a direct view into the very structure of the space of pro-
cesses. In this sense, the complexity-entropy diagram was
parameter free. Note, however, that by choosing all branch-
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ing probabilities to be fair, we intentionally biased this model
class toward high-complexity, high-entropy processes. Nev-
ertheless, the distinction between the topological e-machine
complexity-entropy diagram of Fig. 9 and the others is strik-
ing.

The diversity of possible complexity-entropy diagrams
points to their utility as a way to compare information pro-
cessing across different classes. Complexity-entropy dia-
grams can be empirically calculated from observed configu-
rations themselves. The organization reflected in the
complexity-entropy diagram then provides clues as to an ap-
propriate model class to use for the system at hand. For
example, if one found a complexity-entropy diagram with a
bat cape structure like that of Figs. 4 and 5, this suggests that
the class could be well modeled using energies that, in turn,
were expressed via a Hamiltonian. Complexity-entropy dia-
grams may also be of use in classifying behavior within a
model class. For example, as noted above, a type of
complexity-entropy diagram has already been successfully
used to distinguish between different types of structure in
anatomical MRI images of brains.**’

Ultimately, the main conclusion to draw from this survey
is that there is a large diversity of complexity-entropy dia-
grams. There is certainly not a universal complexity-entropy
curve, as once hoped. Nor is it the case that there are even
qualitative similarities among complexity-entropy diagrams.
They capture distinctive structure in the intrinsic information
processing capabilities of a class of processes. This diversity
is not a negative result. Rather, it indicates the utility of this
type of intrinsic computation analysis, and it optimistically
points to the richness of information processing available in
the mathematical and natural worlds. Simply put, informa-
tion processing is too complex to be simply universal.
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