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We calculate the local contributions to the Shannon entropy and excess entropy and use these

information theoretic measures as quantitative probes of the order arising from quenched disorder

in the diluted Ising antiferromagnet on a triangular lattice. When one sublattice is sufficiently

diluted, the system undergoes a temperature-driven phase transition, with the other two sublattices

developing magnetizations of equal magnitude and opposite sign as the system is cooled.1 The

diluted sublattice has no net magnetization but exhibits spin glass ordering. The distribution of

local entropies shows a dramatic broadening at low temperatures; this indicates that the system’s

total entropy is not shared equally across the lattice. The entropy contributions from some regions

exhibit local reentrance, although the entropy of the system decreases monotonically as expected.

The average excess entropy shows a sharp peak at the critical temperature, showing that the

excess entropy is sensitive to the structural changes that occur as a result of the spin glass

ordering. VC 2011 American Institute of Physics. [doi:10.1063/1.3608120]

How do physical and natural systems store, transmit, and

manipulate information across space and time to produce

patterns? How is information processing embedded in

spatially extended dynamical systems? These matters are

of interest to those wishing to design novel computational

devices. After all, all practical computation must be

physically embodied. Moreover, analyzing a system in

terms of its information processing capabilities is a way

to discover organization and regularity—one of the cen-

tral goals of science. We show how well understood meas-

ures of information and memory can be adapted and

applied to a heterogeneous two-dimensional system. In

particular, we analyze a model in which variables inter-

act on a regular triangular lattice. The interactions are

such that it is energetically favorable for variables to take

on opposite values, but the geometry of the lattice does

not allow this to occur. Such systems are said to be frus-
trated. We study a model in which sites are deleted, which

has the effect of partially relieving frustration. The result

is a transition to an ordered state as the temperature is

lowered. The nature of this ordering is probed by means

of the local measures of information and memory. Our

results show that entropy and memory may be viewed as

local quantities that are unevenly shared across the lat-

tice. We argue that these local quantities are a powerful

and broadly applicable tool for understanding informa-

tion processing in heterogeneous systems.

I. INTRODUCTION

The question of how physical objects compute has

gained considerable attention over the years. That is, how

does a system store, transform, and manipulate information?

And how can these properties be inferred from observations?

Since the 1980’s, there has been considerable work aiming

to develop ways of answering these questions. The result of

this work is a well understood set of quantities that measure

computation, memory, information, and unpredictability, for

one-dimensional (1D) systems. For reviews, see Refs. 2–7.

The situation in two dimensions is not as settled. Many of

the measures of computation and information introduced for

1D systems do not generalize in a unique way to two-dimen-

sional (2D) systems. And the combinatorial explosion asso-

ciated with two-dimensional patterns poses a challenge for

numerical estimation of information processing measures.

Nevertheless, there is a growing body of work that aims to

develop approaches to information and computation in two

dimensions. See Ref. 8 and references therein; for more

recent work see Refs. 9–14.

In this work, we apply information theoretic measures to

a disordered lattice model which shows spin-glass ordering

at low temperatures. Spin glass models were originally

devised to describe disordered magnetic materials, but subse-

quently have been used to model a wide range of phenomena

in which entities interact through random interactions and/or

exhibit frustration. Researchers have also made connections

between spin glasses and a number of information processing

phenomena, including neural networks, associative memory,

and error correcting codes.15

Fully characterizing, the nature of the ordering that

occurs in models of disordered magnetic systems has been a

long-standing challenge in statistical physics. In particular,
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understanding the low-temperature behavior of two-dimen-

sional spin glasses has been a topic of considerable interest

in the last decade.16–20 In general, the onset of spin-glass

ordering is usually associated with broken ergodicity, where

the phase space of the system is divided into several (or per-

haps many) distinct regions with boundaries across which

the system cannot pass with finite probability in the thermo-

dynamic limit. Unlike non-glassy transitions, it is generally

believed that these regions of phase space are not related by

any simple symmetry operation, such as a global spin flip or

a global spin rotation.

One manifestation of this loss of ergodicity is that the

system loses spatial translation symmetry. For example, in

many glassy systems below the transition point, the local

magnetization no longer equals the global magnetization.

Typically, the global magnetization remains zero, while indi-

vidual spins acquire a non-zero expectation value. The mag-

netization is no longer the same on all the sites. The extent

by which the magnetization differs from site to site can be

measured by the Edward-Anderson order parameter, as dis-

cussed more fully below.

In this work, we show that a similar scenario holds for

the entropy. To do so, we make use of an information-theo-

retic method for calculating the entropy. This approach,

whose accuracy is well established for pure systems,21–29

allows one to express the entropy of the lattice as a function

of the frequencies of occurrence of configurations in a small

neighborhood of spins. These frequencies can be directly

measured in a Monte Carlo simulation, avoiding the necessity

of thermodynamic integration to calculate the entropy.

This information theoretic method allows one to define

and measure local entropies—the ensemble average of the

spatial entropy at a particular site. Thus, we can decompose

the entropy into its local contributions, just as we can decom-

pose the global magnetization into local contributions. This

gives us a direct view of the extent to which the disorder in

the system leads to spatial fluctuations in entropy. In so

doing, we obtain a novel way to characterize the changes in

spatial structure that occur in a glassy system. We also calcu-

late a local form of the two-dimensional excess entropy, a

measure of the spatial structure or memory of a system. We

present the results of applying our method to a two-dimen-

sional lattice model recently introduced by Kaya and Berker1

and discussed below.

Our results add to a growing body of recent

work10–12,14,30 on local information measures—i.e., measures

that are applied to a spatially extended system but which mea-

sure some aspect of the information processing that is occur-

ring at a particular lattice site. In the extant work on local

information measures, information is localized as a result of

random initial conditions. The rules governing the system are

homogeneous, but localized structures form as a result of the

random initial configuration used to seed the process. In con-

trast, in the system we study here the localization of informa-

tion processes arises as a result of spatial heterogeneities in

the dynamics of the lattice variables which, in turn, is a result

of the random site dilution in the model.

Our paper is organized as follows. We begin in Sec. II

by reviewing the Kaya-Berker model. In Sec. III, we discuss

our methods in considerable detail. We then present our

results in Sec. IV and conclude in Sec. V by highlighting sev-

eral key points and suggesting several areas for future work.

II. THE KAYA-BERKER MODEL

The model we will work with is a variant of the two-

dimensional anti-ferromagnetic Ising model on a triangular

lattice. The Hamiltonian (or energy function) for the model

is given by

H ¼ �J
X
<ij>

SiSj ; (1)

where the sum is understood to be only over sites that are

nearest neighbors. Since the model is on a triangular lattice,

each site has six nearest neighbors. Each spin Si is a binary

variable: Si 2 �1;þ1f g.
In the following, we will fix the coupling constant J at

� 1. Hence, it is energetically favorable for neighboring

spins to anti-align. However, the geometry of the system

does not allow for all spins to anti-align with their neighbors.

This phenomenon, wherein all energetic constraints cannot

be simultaneously satisfied, is known as frustration. In fact,

this system is maximally frustrated. On every triangle of

adjoining spins, it is impossible to have all spins anti-aligned

with their neighbors. As a result of this geometric frustration,

the system does not order at finite temperature.31

Grest and Gabl32 studied a variant of this model in

which sites are randomly deleted. They obtained Monte

Carlo results suggesting that the antiferromagnet will exhibit

long-range, spin-glass ordering in the presence of quenched

random dilution. Specifically, Grest and Gabl report that a

non-vanishing quenched dilution gives rise to a second order

phase transition. This phenomenon is discussed in general

terms in Ref. 33. For follow-up work on Grest and Gabl’s

model, see Refs. 34–37.

A triangular lattice decomposes naturally into three sub-

lattices such that sites in a given sublattice are neighbored

only by sites in the other two sublattices, as illustrated in

Fig. 1. Kaya and Berker1 analyzed a model in which sites are

randomly diluted only on one sublattice. We shall refer to

FIG. 1. The triangular lattice decomposed into three sublattices, denoted A,

B, and C. Each site, indicated with the solid dot, has six nearest neighbors.

Note that each site is not neighbors with any other sites on the same sublat-

tice. For example, all sites on sublattice A have neighbors from sublattices B

and C only, and not A.
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the lattice on which dilution occurs as sublattice A; the other

two sublattices are B and C. We measure dilution strength as

the percent of the sites diluted on sublattice A. Thus, a dilu-

tion of 100% corresponds to a lattice in which sublattice A is

deleted entirely, resulting in a honeycomb lattice.

Kaya and Berker,1 using a combination of hard-spin

mean field theory38,39 and Monte Carlo simulations, ana-

lyzed this model. They found that the model orders at finite

temperature at a dilution strength at or above approximately

9.75%. The nature of this order is as follows: sublattices B

and C spontaneously magnetize with opposite signs and

equal magnitudes, and there is spin-glass ordering on sublat-

tice A as indicated by a non-zero value of the Edwards-

Anderson (EA) order parameter, to be defined below. Physi-

cally, the addition of vacancies to the two-dimensional case

relieves frustration and leads to this ordered phase.1 Thus,

this model system provides an example of order arising from

disorder and offers a generic system to explore the interplay

between geometric frustration and randomness. This system

exhibits spin-glass and magnetic ordering on separate sublat-

tices, so its phase diagram possesses an unusual richness for

a two-dimensional, short-range model. We shall refer to this

model below as the Kaya-Berker model.

III. METHODS AND BACKGROUND

The central quantity in our study, the entropy, has a dual

existence. In thermodynamics, it is a macroscopic state vari-

able that measures the extent to which a system’s internal

energy cannot be used to perform work. Entropy may also be

viewed from the point of view of information theory or sta-

tistical mechanics. In this view, the entropy is a measure of

the disorder of the microstate. The entropy tells us the

amount of memory needed, on average, to store successive

measurements of the system’s configuration. We will make

use of both views of entropy below.

A. Thermodynamic entropy and other thermodynamic
quantities

The entropy is a thermodynamic state variable and can

be calculated by integrating ds¼ (c/T)dT, where s is the en-

tropy density, c the specific heat per occupied site, and T the

temperature. (Here and throughout, we take Boltzmann’s

constant equal to one.) In practice, to estimate the entropy

density s in a Monte Carlo simulation, one usually integrates

ds from a temperature at which the entropy is known exactly.

Often, this is the infinite temperature limit, where s is ln 2,

since all configurations are equally likely as T ! 1. In this

case, we have the following expression for the entropy den-

sity s as a function of the temperature T:

sðTÞ ¼ ln 2�
ðT

1

cðT0Þ
T0

dT0: (2)

We shall refer to this quantity as the thermodynamic entropy
since this form of s(T) is obtained by the thermodynamic

relationship du¼ Tds, where u is the internal energy density.

The specific heat c relates changes in an object’s tem-

perature T to changes in its internal energy density u:

du¼ cdT. It can also be related to the fluctuations in the in-

ternal energy

c ¼ b2hðu� huiÞ2i ; (3)

where the angular brackets indicate a thermal expectation

value,

h�i �
X

i

� e�bEi ; (4)

and b is the inverse temperature.

The magnetization m is defined as the expectation value

of the spin variables

m � h
X

i

Si i : (5)

One can also define a local magnetization, which is simply

the expectation value of a spin at a particular site i

mi ¼ hSii : (6)

One type of ordering displayed by models of magnetic mate-

rials occurs when the system undergoes a transition from

zero to non-zero magnetization. Such a transition does not

occur in the frustrated model studied here, however, since

the competing interactions do not allow for a net magnetiza-

tion. However, for some frustrated systems, as the tempera-

ture is lowered the spins “freeze in” locally, and the local

magnetizations are non-zero. This sort of state is known as a

spin glass. Spin glass ordering is often measured via the EA

order parameter q

q � 1

N

X
i

m2
i : (7)

That is, the EA order parameter q is the average of the square

of all of the local magnetizations in the system. The EA

order parameter is non-zero when the glass state is entered

and spins locally freeze into a fixed value.

B. Information-theoretic entropy

The entropy may also be expressed via the Gibbs for-

mula or, equivalently, by using the Shannon entropy H[X] of

a random variable X. Specifically, let X be a random variable

that assumes the values x 2 X , where X is a finite set. We

denote the probability that X assumes the particular value x
by Pr(x). The Shannon entropy of the random variable X is

defined by

H½X� � �
X
x2X

PrðxÞlog2PrðxÞ : (8)

The entropy H[X] measures the average uncertainty associ-

ated with outcomes of X. The Shannon entropy is one of the

central quantities of information theory. For more, see e.g.,

Ref. 40. It is standard in information theory to use base-2

logarithms for the entropy, while in physics, where the en-

tropy is usually arrived via Eq. (2), one almost always uses

natural logarithms. Except as noted below, we will use
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base-2 logarithms, and as such are measuring entropy in

units of bits.

The entropy density for a two-dimensional system is

then defined in the natural way. Consider an infinite 2D lat-

tice of random variables Sij whose values range over the fi-

nite set A. Assuming that the variables are translationally

invariant, the 2D entropy density is given by

s ¼ lim
N;M!1

HðN;MÞ
NM

; (9)

where H(N, M) is the Shannon entropy of an N�M block of

spin variables. (For a triangular lattice, this block may be

pictured as a parallelogram.) This limit exists for a transla-

tionally invariant system, provided that the limits are taken

in such a manner that the ratio N/M remains constant and

finite. It is common in information theory and dynamical

systems to use hl to denote the entropy density. For a dy-

namical system or stochastic process which unfolds in time

and not space, hl is referred to as the entropy rate.

Taken together, Eqs. (8) and (9) constitute the familiar

Gibbs expression for the entropy density of a two-dimensional

lattice system. Equation (9) is slow to converge in N and M
and so is of limited practical use. However, there is an alterna-

tive expression for s which converges much faster and proves

to be very accurate. Moreover, we shall see that this form of

the entropy density allows us to decompose the global entropy

of the system into local contributions and will also yield a

measure of spatial structure or memory. We sketch this

method below. For a further discussion, see Ref. 8.

First, we define the conditional entropy

H½XjY� � �
X

x2X ;y2Y
Prðx; yÞlog2PrðxjyÞ ; (10)

where Y is a random variable that assumes the values y 2 Y.

The conditional entropy H[XjY] measures the average uncer-

tainty associated with variable X, if we know the outcome of

Y. We now turn our attention momentarily to a one-dimen-

sional system, as it is easier to define the following quantities

in 1D. Once their 1D definition is explained, we will discuss

their extension to 2D.

In one dimension, the entropy density s may be written

as

s ¼ lim
L!1

sðLÞ; (11)

where

sðLÞ � H½SLjSL�1SL�2 � � � S0�: (12)

In words, s(L) is the entropy of a single spin conditioned on

L of its nearest neighbors. The entropy density is the entropy

of this single spin in the limit that it is conditioned on an

infinitely long block of neighboring spins. The entropy den-

sity s thus represents the average uncertainty per spin, in the

limit that correlations over longer and longer blocks of

neighboring spins are accounted for.

Examining the manner in which s(L) converges to the

entropy density s reveals information about the structure or

complexity of the system. The quantity s(L) converges to s
from above; for finite L, the system appears more random

than it actually is. Summing up these finite-L overestimates

gives one the excess entropy, defined via

E �
X1
L¼1

ðsðLÞ � sÞ : (13)

The excess entropy is thus a measure of the total amount of

randomness that is apparent at small length scales that can

be “explained away” by considering correlations over larger

and larger spin blocks. Thus, the excess entropy captures a

structural property of the system; highly structured systems

will appear random at small scales but will be less so at

larger scales. The excess entropy is a quantity that is comple-

mentary to the entropy density. The former is a measure of

structure or pattern, while the latter measures randomness or

unpredictability.

The excess entropy is a well understood and commonly

used measure of structure or complexity for 1D systems. For

recent reviews and further discussion, see Refs. 6, 7, 41, 42.

The excess entropy is also known as the effective measure

complexity43,44 and the predictive information.6,45 The

excess entropy should not be confused with the quantity of

the same name that refers to the jump in entropy at a first-

order phase transition.

C. Entropy density and excess entropy for two-
dimensional systems

We now briefly discuss generalizing Eqs. (11) and (13)

to 2D systems. For a detailed treatment, see Sec. III of

Ref. 8. Looking at Eq. (12), we are immediately faced with a

puzzle. How should we construct s(L) so that in the large L
limit it converges to s, defined by Eq. (9)? In 1D, there is a

unique ordering to the lattice sites and any one site divides

the system into two halves. Neither is the case for a 2D lat-

tice. Conditioning on a 1D block of adjacent spins, as in Eq.

(12) will underestimate the entropy. Is there a cluster of spins

such that the entropy of a single spin, conditioned on that

cluster, equals the 2D entropy density?

This question can be answered in the affirmative. The

key is to use a shape that extends laterally left and right, but

has a notch in it so that the cluster contains half of the near-

est neighbors of the spin whose entropy we are interested in.

This is illustrated in Fig. 2. Following Ref. 8, call the single

spin whose entropy we are interest in the target spin. In Eq.

(12), the target spin was SL. Let s(M) denotes the Shannon

entropy of a single spin conditioned on a neighborhood of M
spins. This neighborhood is shown for M¼ 7 in Fig. 2. The

numbers in the cells in Fig. 2 indicate the order in which the

sites are added on to the cluster. For example, for M¼ 5, we

would have

sð5Þ ¼ H½SXjS1; S2; S3; S4; S5� ; (14)

where the Si’s are as illustrated in Fig. 2.
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The entropy density may then be shown to be equal

to25,28,46,47

lim
M!1

sðMÞ ¼ s : (15)

The clusters of spins we use to form conditional entropies

are shown in Fig. 2. Since in our model, the interaction range

extends only across one lattice site, the shape need only be

one lattice site deep.21,22,26,27,46 As a result, an infinitely

wide strip has the effect of shielding one half of the lattice

from the other.28 In the limit that the strip is infinitely long

in the horizontal direction, then the probability distribution

of the spin marked with an X is independent of the values of

the spins beneath the strip. Note that the shape in Fig. 2 is

constructed in such a way that the entropy of the target spin

X is conditioned on a neighborhood of spins that includes

exactly half of its nearest neighbors. This is achieved by

placing a kink in the shape around the target spin. For a fur-

ther discussion of the motivation behind the shape of Fig. 2,

see Sec. III of Ref. 8.

This conditional Shannon entropy method for calculat-

ing the entropy density s is well known and has been suc-

cessfully applied to a wide range of systems.24,27,29,48–52 One

might expect that this method for estimating the entropy den-

sity may work poorly near the critical temperature where

there are long range correlations that are missed due to our

truncation of M. However, the entropy density estimates con-

verge extremely quickly as a function of M. For example, in

Ref. 29, this method is used to find the entropy of the two-

dimensional Ising ferromagnet at the critical temperature

within 0.01% of the exact value.

If one is interested solely in the entropy of a system, a

histogram Monte Carlo approach53–56 is competitive with

the information theoretic method discussed here. The benefit

of the information theoretic method, as we shall see, is that it

allows one to decompose the entropy into local contribu-

tions, providing a direct way to measure and visualize the

“freezing in” that occurs across a spin-glass transition.

Finally, we discuss the excess entropy, Eq. (13), for two-

dimensional systems. There are three expressions for the

excess entropy, all of which are equivalent in one dimension:

the expression in Eq. (13), the mutual information between

the system’s past and future, and the sub-extensive scaling

term for the block entropy.41 Each expression leads to a dif-

ferent form for the 2D excess entropy. These forms are not

equivalent, but have been shown to behave similarly.8 For our

work here, we exclusively use the form of excess entropy that

arises from Eq. (13), where s(L) is the conditional entropy

using the notch shape of Fig. 2. This excess entropy expres-

sion was denoted Ec in Ref. 8. Since, we will only use this

form for the 2D excess entropy, we denote it simply by E.

In any event, this form of the excess entropy has been

used to study various forms of Ising spin systems.8,47,57 This

work has shown that the excess entropy is maximized at the

critical point of the paramagnet-ferromagnet transition and

also that it can serve as a general-purpose measure of spatial

structure in two dimensions.

D. Simulation details

To calculate the magnetizations, specific heat, thermo-

dynamic entropy, and local and global information-theoretic

entropies, we simulated the Kaya-Berker model using a

standard single-flip Metropolis algorithm Monte Carlo simu-

lation. Thus, a time average of our Monte Carlo run corre-

sponds to an average over the canonical ensemble. That is, a

configuration c’s probability of occurrence in the simulation

is proportional to e�HðcÞ=T , where HðcÞ is the energy of the

configuration c, and T is the temperature. For all the results

reported below, we used a system of 98� 99 spins and peri-

odic boundary conditions. The system was allowed 4000

Monte Carlo steps (MCS) to equilibrate, sites were updated

sequentially, and measurements were taken every 20 MCS.

All data reported here are the result of at least 50 000 meas-

urements. We estimated the local entropy densities from

block probabilities by observing the frequency of spin-block

occurrences. For all of our results, we used a spin block con-

taining a total of 12 spins.

As this system is frustrated, a Monte Carlo simulation

will experience glassy behavior at low temperatures; see,

e.g., Chapter 6 of Ref. 55. Hence, as the system is cooled,

single-spin flip Monte Carlo methods such as those used in

our study become inadequate for sampling the whole phase

space. The simulation becomes trapped in the vicinity of a

local free energy minimum, leading to incorrect sampling

probabilities and inaccurate data. An analysis of the correla-

tion time using the auto-correlation function of the Edwards-

Anderson order parameter leads us to conclude that T � 0.4

is the lowest temperature at which our results are reliable;

for details see Ref. 58.

There is some controversy as to whether or not various

variants of the 2D anti-ferromagnetic Ising model on a trian-

gular lattice show a transition to a spin-glass phase at non-

zero temperature.1,20,59,60 The goal of this paper is not to

investigate the existence, or not, of such a phase transition.

Rather, our aim is to explore the properties of local entropy

in a frustrated system that experiences glassy behavior. The

Kaya-Berker model clearly shows glassy behavior for the fi-

nite size systems at the time scales accessible to our Monte

Carlo simulation, and hence is well suited for our study. We

are not interested in whether or not such behavior persists at

longer time scales and in the thermodynamic limit.

IV. RESULTS

A. Comparison with exact results

As a test, we calculated the entropy using the two differ-

ent methods, Eqs. (2) and (15), for the undiluted case, a pure

FIG. 2. Target spin (X) and neighborhood templates for conditional entro-

pies. The numbers in the cells indicate the order in which the sites are added

to the template. (Compare with Fig. 2 of Ref. 8.)
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antiferromagnet on a triangular lattice. Since the system here

is undiluted, it possesses a spatial translation symmetry, and

thus, one can obtain the entropy of the system by performing

a spatial average over the frequencies of occurrence of spin

configurations at different sites.

To calculate the entropy using Eq. (2), one needs to inte-

grate down from T¼1, thus requiring a knowledge of the

high temperature behavior of the specific heat c. Rather than

run our simulation out to very high temperatures, for both

the pure and the undiluted cases, we instead made use of a

high-temperature expansion to lowest order in b. This high-

temperature expansion was then used to estimate the entropy

density at T¼ 50. Subsequently, we used the integral form of

Eq. (2) to estimate the entropy at lower temperatures. For

details, see Sec. 4.3.1 of Ref. 58.

We find excellent agreement between the entropy den-

sity calculated using our two methods: information theoretic

and thermodynamic. (These results are not shown; see Fig.

25 of Ref. 58). Both methods also are in agreement with the

exact, zero-temperature entropy density of 0.323066 (Refs.

31, 61). Using our information theoretic results down to

T¼ 0.4, and then extrapolating down to zero temperature

assuming an exponential form, we estimate a ground state

entropy of 0.3232 6 0.0004, in excellent agreement with the

exact result. Using the integration method of Eq. (2), we find

a ground state entropy of 0.3216 6 0.007, again by extrapo-

lating exponentially down to zero temperature. The error

bars are larger for this method, since they arise as a cumula-

tive effect of error bars on each specific heat data point as

Eq. (2) is numerically integrated. (Note: we are using natural

logs for the ground state entropies reported above, to be con-

sistent with the values published in Refs. 31 and 61).

We then turned our attention to the case in which one

sublattice is diluted. In Fig. 3, we plot the three sublattice

magnetizations as a function of temperature for the case of

15% dilution. The two undiluted sublattices spontaneously

magnetize at around T � 0.8; their magnetizations are oppo-

site in sign and equal in magnitude. The diluted lattice

remains unmagnetized but undergoes a spin-glass ordering at

the same temperature, as indicated by a non-zero value for

the Edwards-Anderson order parameter. (We have not plot-

ted this result.) The results of Fig. 3 are in excellent agree-

ment with those of Ref. 1.

In this paper, we focus our attention on the model’s

behavior at 15% dilution. We find that the system’s properties

are qualitatively similar at other dilutions; for details, see Ref.

58. For 15% dilution, we estimate a critical temperature of

0.84 6 0.01. This was obtained by assuming that m �
T � Tcj jb where b is known to be exactly 1/8. The critical

temperature Tc was then varied to obtain the best fit to the cal-

culated magnetizations. For details, see Sec. 5.1 of Ref. 58.

B. Local entropy

The integration method of Eq. (2) can be used for disor-

dered systems without modification. However, in order to

use the information theoretic method, Eq. (15), a key modifi-

cation must be made. In the pure system, one sweeps the

template shape of Fig. 2 through the lattice, noting occur-

rences of each template configuration. The result is the fre-

quency of occurrence of each configuration, averaged over

the ensemble (via the Monte Carlo simulation) and averaged

spatially over the lattice. However, in a disordered system, if

one performs this latter average, one is also averaging over

different local regions of diluted sites. In so doing, the ran-

domness of the dilution gets conflated with the fluctuations

of the spin degrees of freedom, yielding a significantly over-

stated entropy for the system.

Instead, we do not sweep our template across the lattice.

Rather, we keep the template fixed at a number of selected

sites, averaging over the ensemble as our Monte Carlo simu-

lation runs. We thus do not average away the effects of dif-

ferent local bond realizations. The result is a local entropy

that measures the unpredictability of a particular single spin

at a particular site, averaged over the statistical mechanical

ensemble. However, this local entropy is not a property of a

single site; rather, it takes into account the degree to which a

single site is (or is not) correlated with its cluster of neigh-

bors. We will denote these local entropy densities by si,

where i is a spatial index that labels the site on the lattice.

The local entropy tells us how spatially random the system is

at that particular site. Spin variables at locations with a low

local entropy can be predicted accurately given knowledge

of their neighbors, while spins at locations with high local

entropy cannot.

In Fig. 4, we show the results of calculating the local en-

tropy at 900 sites for the Kaya-Berker model with 15% dilu-

tion. Note that there are a range of different local entropy

values. For example, at T¼ 1, there are sites with local entro-

pies as high as around 0.8 and as low as approximately 0.15.

The fact that there are multiple local entropy values is a man-

ifestation of the spatial inhomogeneity due to the random

dilution of sites on the lattice.

Below T � 0.8 on one can see in Fig. 4 the appearance

of forbidden regions in the local entropies; there are ranges of

si values which no longer occur. Presumably this is due to the

fact that there are only a handful of possible local dilution

and bond realizations near the target spin. As the system

freezes in at low temperatures, target spins with similar local

bond and dilation realizations have similar local entropy

FIG. 3. Sublattice magnetizations plotted as a function of temperature. Sub-

lattice A is diluted at 15%. The two undiluted sublattices, B and C, magne-

tize with magnetizations that are equal in magnitude and opposite in sign, in

agreement with Ref. 1.
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densities, leading to the forbidden regions in Fig. 4. Contrast-

ing behavior is found in a Gaussian spin glass, where bonds

assume a continuum of values distributed according to a nor-

mal distribution, and thus there are a continuum of local bond

environments that a target spin can experience. For such a

system the local entropies do not show forbidden regions.62

C. Average of local entropies equals thermodynamic
entropy

How are the local entropies si related to the entropy of

the entire system, given by the thermodynamic integration,

Eq. (2)? To answer this question, we average the local entro-

pies. This amounts to a spatial average over the local entropy

density values. When forming the average we do not include

the local entropies at vacant sites, nor do we count them

when normalizing the thermodynamic entropy. That is, the

entropy density s is the entropy per occupied site.

The results of such an average are shown in Fig. 4 along

with the local entropies. In Fig. 5 we have plotted the aver-

age of the local entropies together with the thermodynamic

entropy obtained via the usual integration. Note the excellent

agreement between the spatial average of the local condi-

tional Shannon entropies and the thermodynamic entropy

arrived at via an integration over the specific heat, which is a

measure of the energy fluctuations in the system.

This agreement indicates that our local entropies si may

be viewed not only as a local statistic, but as a decomposition

of the global, thermodynamic entropy. That is, for a system

with N occupied sites:

s ¼ 1

N

XN

i¼1

si: (16)

Thus, the local entropies capture how the bulk entropy is dis-

tributed across the lattice. While we have found strong numer-

ical evidence that the average of the local entropies equals the

global entropy—and indeed this seems a natural consequence

of the definition of the local entropy—we have not yet

obtained an analytic proof of this property. Obtaining a rigor-

ous proof that the two forms of the entropy are equivalent in

the thermodynamic limit for an inhomogeneous system such

as a spin glass strikes us as a challenging mathematical task

and is an important objective for future research.

D. Local excess entropies

We now turn our attention to the excess entropy, defined

in Eq. (13). As for the entropy density, we calculate the local

excess entropy Ei at a particular site i by keeping our template

fixed at site i. The local excess entropies serve as a measure

of local structure or memory. The Ei value for a site gives us

a measure of how much spatial structure is present at that

site; it tells us the amount of apparent randomness that can be

“explained away” by taking into account successively larger

blocks of its neighbors. As was the case with the local en-

tropy density, the local excess entropy is thus not purely

local, in the sense that it is a measure of the extent to which a

particular spin shares information with nearby spins.

FIG. 4. A sample of the local entropies si. The mean of the local entropies is

shown as a bold line. The data is “striated” for T> 1.4, since in this range

measurements were taken at temperature intervals of 0.1. Measurements

were taken at intervals of 0.01 below T¼ 1.4. For each temperature, 900 dif-

ferent local entropies are shown for a single 99� 98 disorder realization.

Plots for different disorder realizations are very similar.

FIG. 5. Comparison of the two methods for calculating the entropy density

s. The line is the entropy calculated using the integration method, Eq. (2).

The squares are s values calculated using the information theoretic method.

Each square is obtained by averaging 22 different disorder realizations. For

each disorder realization, the local entropies were calculated for 900 differ-

ent sites and then averaged. The error bars are the standard deviations for

the 22 different averaged local entropies. Note the excellent agreement

between the two methods.

FIG. 6. Local and average excess entropies for the model with 15% dilution.

The average excess entropy is indicated by the bold line.
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In Fig. 6 we show the results of calculating the local

excess entropies at 900 sites. One sees a considerable spread

of local excess entropy values Ei. However, note that there

do not appear to be any disallowed regions or gaps in the

local excess entropies. In contrast, the local entropy density,

shown in Fig. 4, shows clear forbidden regions.

We have also plotted in Fig. 6 the average E of the local

excess entropy values. Note that the average excess entropy

shows a sharp peak. This peak occurs at T¼ 0.8. Averaging

over 22 different disorder realizations we estimate that the

peak value of the excess entropy occurs at T¼ 0.82 6 0.02.

Estimating Tc using the magnetization, as described in Sec. A

yields Tc¼ 0.84 6 0.01. We thus conclude that the excess en-

tropy peak coincides with the critical temperature. Further

work at other dilutions confirms this general result.58 This

shows that the excess entropy is a sensitive indicator of the

structural changes that the system undergoes at Tc. In con-

trast, the specific heat (not shown) at the critical temperature

is rather rounded,58 as is often the case in disordered systems.

The sharpness of the jump in average excess entropy is

striking. It has been argued elsewhere8,41,63 that the excess

entropy E can serve as an all-purpose order parameter. For

FIG. 7. Local excess entropies plotted against the local entropies for the model with 15% dilution. The temperatures are, top to bottom, left to right, 2.501,

2.001, 1.501, 1.001, 0.841, and 0.501. The complexity entropy diagram for the critical temperature T � 0.841, is shown in the lower left plot.
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example, it has been shown that the excess entropy is sensi-

tive to periodic order of any periodicity. The excess entropy

can detect generic structural changes in a system. In contrast,

usually order parameters must be tailor-made for a specific

type of order. Thus, the use of an order parameter typically

requires some a priori knowledge of the type of order or

structure sought.

The excess entropy requires no such a priori knowledge.

That the excess entropy detects the phase transition is partic-

ularly noteworthy for the Kaya-Berker model studied here.

The order parameter for this system actually varies depend-

ing on the sublattice: the Edwards-Anderson order parameter

is used on the diluted sublattice while the magnetization is

used for for the other two sublattices. A calculation of the av-

erage excess entropy, on the other hand, does not require

decomposing the lattice into its three sublattices.

E. Complexity-entropy diagrams

We have seen that at a given temperature there is a

range of different local entropy values si and local excess en-

tropy values Ei. How are the excess entropy and entropy den-

sity values related? Is it the case, for example, that the high

entropy sites also have high excess entropy? Is there a full

spectrum of si and Ei values, or are the two quantities related

in some way?

These questions can be addressed with the aid of a con-

struction known as a complexity-entropy diagram,57,64 in

which a measure of complexity such as the excess entropy is

plotted against the entropy density s. This allows one to view

a system’s computational behavior in terms of parameter-

free information processing coordinates. For example, in

Ref. 57 complexity-entropy diagrams were calculated for

one and two-dimensional Ising models, chaotic maps of the

unit interval, cellular automata, Markov chains, and minimal

probabilistic automata. The complexity-entropy diagrams

allowed for a common framework to view these systems’ in-

formation processing capabilities without reference to sys-

tem parameters such as temperature or coupling strength.

In Fig. 7 we plot the complexity-entropy diagram for the

Kaya-Berker model for six different temperatures for a sin-

gle disorder realization. Plots for other disorder realizations

appear nearly identical to those of Fig. 7. In the upper left

plot, T¼ 2.501 and the system is well above the critical tem-

perature. One sees that a relatively small area of the com-

plexity-entropy diagram is occupied, indicating little

information processing diversity. Essentially all sites have a

fairly high local entropy density and a low local excess en-

tropy. As the temperature is lowered, the region of occupied

complexity-entropy space expands, indicating a greater di-

versity of local information processing behaviors dispersed

across the lattice.

The lower left plot in Fig. 7 shows the complexity-en-

tropy diagram near the critical temperature. Here we see the

widest range of information processing behavior. The local

entropies range from almost zero (indicating perfect predict-

ability) to almost one (maximally unpredictable).

Note, however, that there is structure evident in this

complexity-entropy diagram. In particular, there is a clear

linear upper bound. This phenomenon can be explained as

follows. For a 1D Markov chain of order R, there is an upper

bound on E as a function of s (see Eq. (15) of Ref. 57):

E 	 Rð1� sÞ : (17)

The Kaya-Berker model is a 2D system on a triangular lat-

tice. In the template used to form entropy estimates, Fig. 2,

the target spin has three nearest neighbors. Thus, the system

may be approximated as an order- 3 Markov chain. The dis-

tribution of the target spin SX depends almost entirely on the

value of the three nearest neighbors. In Fig. 8 we show the

complexity-entropy diagram for T¼ 0.841 as well as the

upper bound of Eq. (17) with R¼ 3. As expected, this bound

is only approximate, since the system is not exactly Marko-

vian. Nevertheless, it captures the form of the upper limit

fairly well.

Finally, note the complexity-entropy diagram for

T¼ 0.501 in the bottom right of Fig. 7. At this temperature

the system is in a glassy, frozen state. Interestingly, the local

information processing behavior of the sites seem to be

arranged in four clusters. A number of sites have essentially

zero entropy density and zero excess entropy, indicating that

they are frozen along with their neighbors. However, there

are also three clumps on the complexity-entropy diagram

that do not have zero entropy. Presumably these sites are not

frozen, but instead some degrees of freedom are still active.

As noted above, Ref. 57 calculated the complexity en-

tropy diagrams for a number of different systems, including

1D and 2D Ising models. The complexity entropy diagrams of

Ref. 57 were obtained by sampling a model class by varying

temperature and/or coupling strength. In contrast, complexity

entropy diagrams for the Kaya-Berker model show just one

particular instance of the model. Each plot in Fig. 7 corre-

sponds to just one temperature and one disorder realizations;

the scatter of points represents the range of different local
entropies and excess entropies. None of the local complexity

entropy diagrams shown in Fig. 7 show a strong resemblance

to those calculated in Ref. 57. This is not surprising; the spin-

glass ordering of the sort studied here are generally believed

to be structurally quite different from regular Ising models.

The information processing coordinates—the entropy density

FIG. 8. The complexity entropy diagram for T¼ 0.841. Also shown is the

Markovian upper bound, Eq. (17) with R¼ 3.
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si and the excess entropy E —provide a vivid way to visualize

this distinction.

V. DISCUSSION AND CONCLUSION

To summarize, we introduced two local information-the-

oretic quantities: a local version of the two-dimensional en-

tropy and a local excess entropy. We numerically calculated

these quantities for the Kaya-Berker model, a 2D lattice

model that shows spin-glass ordering at non-zero tempera-

ture. Our main results are as follows.

First, we have presented strong numerical evidence that

the entropy of a disordered lattice system can be decomposed

into local entropy densities whose mean is equal to the

global entropy density. In a heterogeneous system the en-

tropy is not shared equally across the lattice. The local entro-

pies show which sites are more entropic and which are less.

We have shown that the model exhibits local reentrance—

the local entropy at some sites initially decreases but then

increases as temperature is lowered. This result shows that

some sites become locally more disordered at lower tempera-

tures, as one might expect in a partially frustrated system

with a degenerate ground state.

Second, the local excess entropy can also be divided up

into its local contributions. As is the case for the entropy den-

sity, sites possess a wide range of local excess entropy values.

Third, the average local entropy shows a sharp, distinct

peak at the critical temperature. This provides evidence that

the excess entropy, which is already known to be sensitive to

periodic ordering,8,63 is also a strong indicator of spin glass

ordering. The excess entropy is a general measure of pattern

or structure, and unlike most order parameters does not

require prior knowledge of the relevant pattern.

Fourth, we calculated the local complexity entropy dia-

grams at different temperatures for the Kaya-Berker model.

These diagrams display the range of information processing

that is occurring locally across the lattice. The complexity

entropy diagrams at lower temperatures reveal a consider-

able diversity of structure (excess entropy) and unpredict-

ability (entropy density). Moreover, the structure of the

complexity entropy diagrams is distinct from those reported

in Ref. 57, indicating that frustrated lattice models such as

the Kaya-Berker model have a different signature when

viewed in information processing coordinates.

We conclude by suggesting several directions for future

work. There are a number of ways one can extend and fur-

ther apply our methods to probe the nature of spin-glass

ordering. Other models can be studied, including the

Edwards-Anderson spin glass and variants of the random

field Ising model. It would be of interest to see if the local in-

formation processing behaviors seen for the Kaya-Berker

model are similar for other frustrated systems. If so, then this

would indicate an information-theoretic feature common

across different models. If not, then this would help shed

light on the difference between these models.

Another possible extension of our methods would be to

form an overlap using the local entropy density. The overlap

is a valuable tool for comparison of low-lying energy states in

spin glasses. As usually defined, the overlap is a normalized

dot product of average magnetization vectors, in which each

vector has as its components the average site magnetizations.

A similar overlap function can be defined for the local entropy

densities and the local excess entropies. This quantity will

demonstrate whether, as the system is cooled, certain regions

always retain floppiness while others freeze, or if the locations

of these regions vary. This overlap will also show how low-

entropy regions become more prevalent under cooling.

The local entropy and excess entropy introduced here

may be applied to systems other than spin glasses. Quite gen-

erally, these tools can be used to study any lattice system in

which information or memory is not shared uniformly across

the lattice. Examples include 2D cellular automata and mod-

els in which agents interact on a lattice, such as the spatial

prisoner’s dilemma.65,66 Of particular interest might be

studying such models on lattices in which some disorder has

been added. For example, Vainstein and Arenzon have

examined a spatial iterated prisoner’s dilemma with deleted

sites67 and find that doing so increases the fraction of agents

that cooperate. This result is tantalizingly similar to what

occurs with the Kaya-Berker model, in which site dilution

relieves frustration.

The local information theoretic tools introduced here are

powerful and broadly applicable. They can be applied to a

variety of systems. The result is two quantities—the local en-

tropy density and the local excess entropy—that capture

local information processing independent of system parame-

ters. These quantities should find much use understanding

the myriad ways that heterogeneous spatial systems store,

transmit, and manipulate information.
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37C. Z. Andérico, J. F. Fernández, and T. S. J. Streit, Phys. Rev. B 26, 3824

(1982).
38R. Netz and A. N. Berker, Phys. Rev. Lett. 66, 377 (1991).
39R. Netz and A. N. Berker, J. Appl. Phys. 70, 6074 (1991).
40T. M. Cover and J. A. Thomas, Elements of Information Theory (Wiley,

New York, 1991).
41J. P. Crutchfield and D. P. Feldman, Chaos 15, 25 (2003).
42W. Ebeling, Physica D 109, 42 (1997).

43P. Grassberger, Int. J. Theor. Phys. 25(9), 907 (1986).
44K. Lindgren and M. G. Norhdal, Complex Syst. 2(4), 409 (1988).
45I. Nemenman, W. Bialeck, and N. Tishby, Physica A 302, 89 (2001).
46K. E. Eriksson and K. Lindgren, Entropy and correlations in lattice sys-

tems. Technical report No. 89-1, Physical Resource Theory Group, Chalm-

ers University of Technology and University of Göteborg, 1989.
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