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We compare and contrast three different, but comple-
mentary views of “structure” and “pattern” in spatial pro-
cesses. For definiteness and analytical clarity we apply all
three approaches to the simplest class of spatial processes:
one-dimensional Ising spin systems with finite-range interac-
tions. These noncritical systems are well-suited for this study
since the change in structure as a function of system parame-
ters is more subtle than that found in critical systems where,
at a phase transition, many observables diverge thereby mak-
ing the detection of change in structure obvious.

This survey demonstrates that the measures of pattern
from information theory and computational mechanics differ
from known thermodynamic and statistical mechanical func-
tions. Moreover, they capture important structural features
that are otherwise missed. In particular, a type of mutual
information called the ezcess entropy—an information theo-
retic measure of memory—serves to detect ordered, low en-
tropy density patterns. It is superior in many respects to
other functions used to probe the structure of a configura-
tion distribution, such as magnetization and structure factors.
e-Machines—the main objects of computational mechanics—
are seen to be the most direct approach to revealing the (group
and semigroup) symmetries possessed by the spatial patterns
and to estimating the minimum amount of memory required
to reproduce the configuration ensemble, a quantity known
as the statistical complezrity. Finally, we argue that the in-
formation theoretic and computational mechanical analyses
of spatial patterns capture the intrinsic computational capa-
bilities embedded in spin systems—how they store, transmit,
and manipulate configurational information to produce spa-
tial structure.
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I. INTRODUCTION

The questions we consider fall into three broad areas.
First, what is a pattern [1]? An initial response might
be that a pattern is some observed regularity or repeated
tendency. Recall that for some time now there has been
considerable interest in “pattern-forming” systems. But
what exactly does “pattern” mean in this setting? Who
is to say what patterns are and who determines which
systems have generated patterns and which have not?
Moreover, many natural patterns are only approximate.
So how do we manage to separate pattern from mere
noise? Presumably, we also have to consider the possibil-
ity that noise is part of the pattern. Is there some way
to formalize what a noisy pattern is?

A second area of questions concern organization: what
does it mean to say that a system is organized? In sta-
tistical mechanics, order is often associated with a bro-
ken symmetry. For example, the Ising model orders by
acquiring a net magnetization when the spin-flip symme-
try is broken. Can we define a similarly general notion
of organization? Can we distinguish between different
types of organization? There has been much effort ex-
pended recently to study “self-organizing” systems. But
who is to say which systems are organized and which
are not? More to the point, where is the “self” in self-
organization? The organized-nonorganized distinction is
very crude. Can’t there be degrees of organization? How
would one say that one system is more organized than
another?

A third set of questions revolves around information
processing: how can we detect the computation being
performed by a physical process or by other natural sys-
tems, such as the immune system or the visual cortex,
in which pattern recognition, decision-making, and the
like are (ostensibly) the central functions of the underly-
ing dynamical behavior? In a condensed matter system,
for example, how must spatial information be stored and
shared so that it can reach a critical state? How much
historical memory is required to produce a given config-
uration? How do raw dynamical degrees of freedom sup-
port computation—the storage, transmission, and ma-
nipulation of information?

Are pattern, organization, and computation related in
any way? Our hypothesis is that they are intimately re-
lated and that inquiring about a system’s computational
capabilities is a concrete way to address questions of pat-
tern and organization [2]. Computation, pattern, and
organization are related in that they are all statements



about the relationships within and between a system’s
components and behavior. Restated in a more direct way,
the hypothesis is simply that analyzing how a process
“computes”—stores historical information, transmits it
between internal degrees of freedom, and uses it to pro-
duce future behavior and system configurations—reveals
how it is organized and what types of patterns it gener-
ates.

Establishing this hypothesis requires that we adopt a
particular stance. Throughout this work the central is-
sue is discovering, as opposed to verifying, pattern. The
verification that a configuration displays one of a certain,
a priori selected set of symmetries is not at issue here;
though it is, admittedly, an important concern. Rather,
the goal is to determine what organization and which
kind of patterns are intrinsic to a process. We ask, What
in a process’s configurations and temporal behavior indi-
cates how it is organized?

Faced with analyzing a system of many interacting
components, it is usually necessary to resort to a statis-
tical description of some sort. A statistical analysis also
becomes necessary when considering the trajectories fol-
lowed by a chaotic dynamical system. To capture essen-
tial aspects of such systems, statistical analyses typically
entail calculating some average property: temperature,
compressibility, Lyapunov exponents, escape rates, and
so on. However, these are certainly not the only quanti-
ties about which one can ask. In this paper we consider
some of the more detailed, yet still statistical, quantities
that one can measure in a many-body setting and that
indicate a process’s degree of organization.

Statistical mechanics has a very limited set of tools for
discovering and quantifying structure, pattern, informa-
tion processing, and memory in physical systems. It is
our contention that to satisfactorily address these issues
some tools must be added to the statistical physicist’s
tool-box. In this paper we review and adapt techniques
and concepts from information and computation theories
that will enable us to address questions of memory, struc-
ture, organization, and pattern. We apply these tech-
niques to simple statistical mechanical systems to show
that a richer set of tools is available for discovering pat-
tern and describing organization in many-body systems.

A. Historical Context

Historically, the issues of pattern and organization
have been the province of spatially extended many-body
systems, as analyzed by phase transition theory, to men-
tion one approach. More recently, though, many of the
same questions have arisen in the conundrum of deter-
ministic chaotic dynamical systems: simple, but nonlin-
ear processes produce unpredictable, seemingly random
behavior. Physics has long possessed a measure of the
uncertainty of a probabilistic system—namely, the Shan-
non entropy [3,4] of the underlying distribution. The

Shannon entropy, introduced over 100 years ago by Boltz-
mann, was adapted in the ’50’s by Kolmogorov [5] and
Sinai [6] to the study of dynamical systems. This, in
turn, formed the foundation for the statistical analysis
of deterministic sources of apparent randomness in the
late ’60’s through the early ’80’s. These efforts to de-
scribe the randomness of a dynamical system have been
rather successful. The metric entropy, Lyapunov expo-
nents, and fractal dimensions form a widely applicable
set of tools for detecting and quantifying unpredictable
behavior; see, e.g., Refs. [7,8].

Since this time, however, it has become more broadly
understood that a system’s randomness and unpre-
dictability fail to capture its patterns and correlational
structure. This realization has led to a considerable ef-
fort to develop a general measure or set of measures that
quantify the structure of a system and the patterns it
generates [2,9-21]. These quantities are often referred to
as “complexity” measures. More properly, they should be
called “structural complexity” or “statistical complexity”
measures to distinguish them from Kolmogorov-Chaitin
complexity [22], a measure of randomness, and computa-
tional complexity [23], a measure of resource (run time
or storage) requirements in the theory of algorithms.

In this paper we shall consider two approaches to mea-
suring structure. First, we’ll see how information theory
provides a measure of the memory stored in a system’s
configurations. To date, this and related quantities have
been estimated for the symbolic dynamics of chaotic dy-
namical systems [12,13,15,24], cellular automata [10,17],
stochastic automata [18], spin systems [25,26], and hid-
den Markov models [2,27].

Second, we’ll examine how the architectural analysis of
information processing provided by computation theory
can be used to describe structure more completely than
by using information theory or, for that matter, statisti-
cal mechanics. By using a hierarchical approach that
begins with the least computationally powerful model
classes, it is possible to infer the computation being per-
formed by the system. This approach, an extension of
statistical mechanics that includes elements of statistical
inference and computation theory, we call computational
mechanics.

For a more detailed discussion of the motivations and
central issues that underlie computational mechanics,
the reader is referred to Refs. [1,2,28]. Computational
mechanics has been applied to the period-doubling and
quasiperiodic routes to chaos [11,29], the dripping faucet
[30], one-dimensional cellular automata [31,32], glob-
ally coupled maps [33], recurrent hidden Markov mod-
els [2,27], and stochastic resonance [34]. Computational
mechanics has also been proposed [35] as a useful tool
with which to re-examine the learning paradox of devel-
opmental psychology that concerns the discovery of new
patterns, not seen before [1].



B. Focus

In this paper we use one-dimensional Ising systems
to compare statistical mechanical, information theoretic,
and computational mechanical views of structure, orga-
nization, and pattern. Since one-dimensional systems are
generally considered simple, well-understood, and thor-
oughly analyzed, the contrasts between the statistical
mechanical view and the structural view we take are par-
ticularly apparent.

Finite-range one-dimensional spin systems do not ex-
hibit continuous phase transitions. As we’ll see, however,
this does not mean that they are featureless systems, void
of correlations and patterns. Indeed, a system need not
be critical to be organized.

C. Applications

There are three overlapping areas of application of
the tools for discovering and quantifying pattern, com-
putation, and organization we develop here. First, the
methods should be of benefit when considering small-
scale physical systems as the basis of useful information-
processing devices [36]. Along the same line, the infor-
mation theoretic approach to memory might help clarify
issues surrounding the “memory” observed in systems
with charge density waves [37] or with glassy dynamics
[38].

Second, it is likely that the structures that emerge in
the canonical models of many-body systems (e.g., with
Ising, XY, and Heisenberg Hamiltonians) can be ana-
lyzed more thoroughly through the use of computational
mechanics and information theory. These model systems
have formed the basis for much of our understanding of
critical phenomena. Thus, it seems natural to reexamine
these models by applying the computational and infor-
mation theoretic apparatus discussed here.

Third, statistical mechanical techniques are now being
applied to a wide range of nontraditional systems, such as
self-organized criticality [39], genetic algorithms [40,41],
traffic flow [42,43], and learning dynamics in neural net-
works [44,45]. Extant quantities in statistical mechanics
have been influenced by the observability constraints of
physical experiments. For the most part, only directly
measurable quantities such as the pressure, conductivity,
or net magnetization have been thoroughly developed.
However, for some of these more exotic systems such
measurability constraints may not be limitations, since
the microstates themselves can be directly observed. In
these cases one need not carry forward the traditional
constraints, especially when new structural questions re-
quire different quantities to be estimated.

Information theory and computational mechanics pro-
vide a richer set of tools for studying these sorts of sys-
tems. Of course, the most revealing and meaningful
quantities will always depend on the specific features of

the system under study. It is not our intention to argue
for one particular way to measure organization or pat-
tern. Rather, we suggest that to fully capture patterns
and organization in a wide range of many-body systems,
the probes offered by statistical mechanics fall short; con-
cepts and methods from information and computation
theories become necessary.

D. Overview

The presentation is organized into three layers: intro-
ductory comments, definitions and reviews, and appli-
cations to 1D-spin systems. In each, we compare and
contrast the statistical mechanical, information theoretic,
and computational mechanical views of structure.

In Sec. IT we review the basic statistical mechanical ap-
proaches to detecting and quantifying features in many-
body systems. We also use this section to fix the notation
and context that we will assume for the rest of the de-
velopment. Section IIT reviews information theory and
defines the three key quantities: the Shannon entropy,
the Shannon entropy rate, and a form of mutual infor-
mation called the excess entropy. Section IV then gives a
concise, but self-contained, review of computational me-
chanics. In each of these three review sections we begin
by considering the central questions that motivate each
approach and we shall see how the quantities introduced
arise as natural answers to these questions. Awareness of
the different motivating issues is crucial to understanding
the differences and similarities between the three views
of organization and pattern.

In Sec. V we report the results of applying the measures
of structure to finite-range one-dimensional spin systems.
We compare, for example, the excess entropy with the
structure factors of statistical mechanics in Sec. VI. We
will see that the excess entropy is capable of detecting
periodic structure of any periodicity and thus may be
viewed as an “all-purpose order parameter” for periodic
patterns. In Sec. VII, we show that e-machines are nec-
essary to describe the structure of entropic patterns that
do not have a strong periodic component. In so doing, we
illustrate how an e-machine provides an “irreducible rep-
resentation” of an approximate symmetry. In Sec. VIII
we directly compare the excess entropy with a number
of commonly used measures in statistical mechanics: the
correlation length, specific heat, ferromagnetic structure
factors, and the nearest-neighbor correlation function.
We argue that while there are qualitative similarities be-
tween all these functions, none can be viewed as a mea-
sure of memory in the sense that the excess entropy can
be. Furthermore, we find that all these functions are
maximized at different parameter values, indicating that
they are not trivially related and that the statistical me-
chanical functions cannot be used to determine the pa-
rameter values at which a system’s spatial memory is
maximized. Lastly, in Sec. IX we summarize our com-



parisons and discuss directions for future work.

II. STATISTICAL MECHANICS

A central concern of equilibrium statistical mechanics
is determining how physically observable, bulk quantities
can be explained from the behavior of the system’s con-
stituents. For example, how are the conductivity, heat
capacity, and compressibility of a metal determined by
the interactions between the electrons and nuclei that
make up that metal?

The starting point for such calculations is a knowl-
edge of the microphysics—typically, the Hamiltonian for
the system expressed as a sum or an integral over the
system’s internal degrees of freedom. The connection be-
tween the energy determined by the Hamiltonian and the
joint probability over the internal degrees of freedom is
given by

Pr(C) o« e PO | (1)

where C is a configuration of the system and H is the
system’s Hamiltonian. The quantity 8 = 1/(kpT) is the
inverse temperature and kp is Boltzmann’s constant. For
the remainder we set kp equal to one.

In principle, given a Hamiltonian one can use Eq. (1)
to calculate macroscopically observable average quanti-
ties. However, performing the necessary sums is usually
prohibitively difficult; a consideration we shall return to
at the end of this section.

Thus, although Eq. (1) sets out one (basic) approach
to determining a system’s physical properties, the fail-
ure of its direct implementation leaves many questions
unanswered. Not the least of which is the one that con-
cerns us here: How does statistical mechanics go about
discovering and quantifying structure? Before we begin
addressing these questions, we pause to establish some
notation and set the context for the following develop-
ment.

A. Spin Systems: Notation and Definitions

The main object of our attention will be a one-

dimensional chain gz ...8 25 180851 - .. of spins (ran-
dom variables) S;’s that range over a finite set A. For
a spin-K system, |A| = 2K + 1. Alternatively, one may
also consider the chain as being a stationary time series
of discrete measurements. We shall restrict ourselves to
distributions that are time independent. That is, we con-
sider only equilibrium distributions. If we imposed some
time dependence—say a Glauber dynamics or an update
rule for a one-dimensional cellular automaton—then we
would need to include a time index on all the spin vari-
ables.

We divide the chain into two semi-infinite halves by
choosing a site ¢ as the dividing point. Denote the left
half by

<
I Sj735i725i,1 (2)

and the right half by

—
S,'E SiSz-+1S,~+QS,~+3 e . (3)

We will assume that a spin system is described by a spa-
tial shift-invariant measure p on bi-infinite configurations
---5_98_1505182---;8; € A. The measure y induces a
family of distributions that will be of primary interest.
Let Pr(s;) denote the probability that the i*® random
variable S; takes on the particular value s; € A and
Pr(s;y1,---,8:4+r) the joint probability over blocks of L
consecutive spins. Assuming spatial translation symme-
try, Pr(sit1,-..,8i41) = Pr(s1,...,sr). We denote a
block of L consecutive spin variables by S* = ;... S¢.
We shall follow the convention that a capital letter refers
to a random variable, while a lower case letter denotes a
particular value of that variable. s, therefore, denotes a
particular spin-block configuration of length L. Finally,
in the following we shall use the term process to refer to
the joint distribution over the bi-infinite chain of vari-
ables.

We now define the Hamiltonians we shall use to gener-
ate equilibrium distributions of our spin chain. A general
Hamiltonian for a one-dimensional chain of N spins that
interact in pairs is given by

N N
H(SN) = — Z Jz'jSz'Sj — BZS,’ s (4)
i=1

3,j=1

where, as usual, the J;;’s are parameters determining
the strength of coupling between spins, B represents an
external field, and for example s; € {+1,—1} or s; € {1
,4}. Below, we shall consider only interactions within a
finite range R < oo; that is,

Jij =0, li-j|>R. (5)

We shall also consider only coupling constants that are
translationally invariant; i. e., those depending only on
| — j| and not ¢ and j individually. Hence, we define:

Jr= Jij ) (6)

where r = |i — j|. Despite these restrictions on J;;, the
quantities discussed below are perfectly general and ap-
ply to any lattice system.

The canonical partition function for these spin systems
is defined by

7 = Z e BH(Y) (7)
{sN}



The sum is understood to extend over all |A|"N possible
configurations of length V.

The average internal energy U is simply the expecta-
tion value of the Hamiltonian and can be expressed as:

1 0lnz
U= “Nag (8)
The free energy F' per site is given by
T
F= N log Z . 9)

In the thermodynamic limit, in which the system size N
goes to infinity, Z typically diverges exponentially so F’
remains finite.

The thermodynamic entropy is defined as the loga-
rithm of the number of microstates accessible at a given
energy. In the canonical ensemble, the entropy per site
S is related to the free energy per site F via:

oF
S=-. (10)

Finally, the magnetization m per site is defined as the
average:

N

SO s (1)

i=1

m

where here and below angular brackets indicate thermal
expectation value;

1 (N
(O)EZZOG AH(T) (12)
{s}

B. Statistical Mechanical Measures of Structure
1. Correlation function and correlation length

With the above notational preliminaries out of the way,
we consider our first measure of “structure”: the two-spin
correlation function I';j, defined in the usual way as

Lij = (si = (si))(s; — (s5)) - (13)

This quantity is sometimes called the truncated or
connected correlation function to distinguish it from
(sis;). It follows from translation invariance that (s;) =
(sitk), k =1,2,.... This enables us to write the correla-
tion function as

Ty = (sis;) — ()%, (14)

where (s) = (s;). Thus, I';; measures the tendency of
the fluctuations (about the mean value) of spins at site i
and at site j to be correlated with one another.

Again from translation invariance it follows that
(sisj) = (Si+rSj+k), £ = 1,2,... . And so, the corre-
lation function depends only on r = |i — j| and not on 4
and j individually. This leads one to define:

L(r) = (sos,) — (s)?. (15)

Except at a critical point, the correlations die exponen-
tially with increasing r; that is,

L(r)~e /¢ as r— o0. (16)

The quantity £ is called the correlation length. Simply
stated, it measures the range of influence of a single spin.
Equivalently, ¢ gives the size of a typical ordered clus-
ter of spins. An infinite correlation length typically in-
dicates that the correlation function dies algebraically,
rather than exponentially. This occurs at the critical
points of continuous (second or higher order) phase tran-
sitions.

2. Susceptibility and structure factors

The magnetic susceptibility x per site is defined as a
measure of the system’s linear change dm in magnetiza-
tion per site due to the application of a small external
field dB. That is,

dm = xdB . (17)
Thus,
om 0’F
== . 1
X= %8B ~ T @By (18)

As is always the case with linear response functions, x
can be written as a sum of correlation functions;

3 N
= 1i — L. 1
X Nl—I>noo N Z 4 ( 9)
3,j=1
We can exploit the translation invariance of I';; to per-
form one of the sums above. We then obtain:

x =25 l2 > r(r) - F<0)] : (20)
=0

This expression for x can be reconciled with its definition,
Eq. (17), by realizing that, roughly speaking, the magne-
tization is more changeable with a variation in field dB
the greater the correlations between spin pairs.

Eq. (19) tells us that x is a sum over correlation func-
tions and as such might serve as a global measure of
structure. In particular, consider the term » 2 T(r),
the sum over all possible two-spin correlation functions,
from Eq. (20). At first blush, this seems to be an ideal
quantity to use as an indicator of structure. By sum-
ming over all two-spin correlation functions x appears



to provide a measure of the total correlations across the
lattice.

However, this turns out not to be the case. To
see this, consider a system near an antiferromagnetic-
paramagnetic transition. Clusters of ordered spins ap-
pear at all length scales, but the type of order within
a cluster is antiferromagnetic—alternating up and down
spins. Thus, the correlation functions I'(r) for such a
system will alternate in sign with r and will tend to can-
cel each other out, resulting in a small quantity despite
the presence of a strong antiferromagnetic ordering. To
compensate for this, one could choose, for example, to
multiply each term in the sum by (—1)". But this is a
somewhat arbitrary adaptation to a particular set of spin
couplings that derives ultimately from our own appreci-
ation of the underlying order.

Instead, we can take the Fourier transform of spin con-
figurations. The result is a function that is usually called
the structure factor. It is given by

S(g) =) e T(r). (21)
r=0

The structure factor provides a measure of the correla-
tion with a particular spatial periodicity, as measured by
the wavenumber g. As an observable, S(g) is important
for both simulation and laboratory experiments. In a
simulation it is often S(g) that is calculated to look for
a phase transition: an S(g) that diverges as a function
of system size is a clear indication of critical behavior.
In the laboratory, order in a magnetic system is often
probed by means of neutron scattering. Assuming dipole
interactions and fixed target spins, the probability for
scattering to occur with a momentum transfer ¢ is pro-
portional to S(q); see, e.g., [46]. Neutron scattering is
used, for example, to distinguish between a paramagnet
and an antiferromagnet. Both types of materials have
zero magnetization, but their magnetic structural prop-
erties are distinct.

Any transform (integral or discrete) carries with it rep-
resentational restrictions that are implicit in its choice of
function basis. For example, S(q), as with all Fourier
analysis, carries an assumption that the underlying or-
der is a linear superposition of periodic configurations.
Hence, as we shall see, S(q) is not suited to detect aperi-
odicity. Moreover, it is sometimes the case that a partic-
ular choice of function basis results in an unnecessarily
“large” description; for example, a Fourier decomposition
of a square wave yields an infinite number of nonzero am-
plitudes.

Unfortunately, there is no universally accepted way to
define a structure factor. One alternative is to define

Si(q) = BS(q) - (22)

so that the susceptibility is more closely related to the
structure factor: x = 251(0) — ST'(0). Another al-
ternative is to argue that if the structure factor is to

measure correlation between spins, the “self-correlation”
term I'(0) should be excluded from the sum; yielding

8u(g) = 3¢ T(r) (23)

Both modifications of the structure factor do not signif-
icantly alter the features of its behavior reported below.
As such, we shall focus our attention on S(g) as defined
in Eq. (21).

3. Specific heat

We conclude this brief review of statistical mechani-
cal measures of structure by commenting on the specific
heat. The specific heat C is a linear response function
defined by

dU = CdT , (24)

where U is the internal energy. Like x, C' can be related
to fluctuations—in this case, energy fluctuations:

C= U - (U))) - (25)

As a result, C' measures fluctuations in energy, not in
correlations between spins. To see this, consider a para-
magnet, a spin system in which there are no couplings
between the spins and so the spins variables are indepen-
dently distributed. The specific heat for such a system
is nonzero, reaching a maximum in the 7" = B region.
That C' is nonzero for this system—a clearly correlation-
less paramagnet—indicates that C' > 0 is at best a mis-
leading measure of spatial structure.

C. Other Statistical Mechanical Approaches to
Structure

In the previous section we reviewed some basic quanti-
ties often used in statistical mechanics to detect and mea-
sure the presence of correlational structure. But there are
other, more subtle ways in which the search for structure
enters into statistical mechanics than in the use of its
typical observables.

A calculation of (say) the partition function by ex-
plicitly considering all allowed configurations is infeasi-
ble for all but the smallest of systems. It is quite often
the case, however, that the probability distribution to be
summed over has symmetries or internal structure that
render large portions of the sum in Eq. (7) redundant.
Thus, one central challenge of statistical mechanics is to
find these symmetries and figure out how to best exploit
them.

As a simple example of the discovery and exploitation
of symmetries consider again the paramagnet. Since the
spins do not interact, the energy of the system depends



only on how many spins are up, say. Equivalently, the
probability distribution of a single spin is independent
of the others. Due to this particularly simple symmetry
in the joint probability distribution over spin configu-
rations, thermodynamic averages may be calculated by
using the binomial theorem, rather than a brute force
enumeration of all possible configurations.

A less trivial example of the “covert” role of structure
in statistical mechanics is found in the technique of trans-
fer matrices. For one-dimensional systems with finite-
range interactions, such as the one-dimensional Ising
models considered here, the partition function can be
re-expressed in terms of the dominant eigenvalue of this
finite-dimensional matrix. Moreover, the joint probabili-
ties over spin configurations follow from the dominant left
and right eigenvectors. Hence, all thermodynamic aver-
ages can be determined given knowledge of the transfer
matrix. Loosely speaking, the transfer matrix encodes
all of the information about the system. In subsequent
sections we shall discuss transfer matrix methods in more
detail.

Unfortunately, the transfer matrix method does not
always work, often failing for systems with disorder or
long-range interactions. It is only successful for systems
whose joint probability distribution over configurations
factors in a certain way: namely, the distribution over
the spin chain must decompose into independent distri-
butions over contiguous spin blocks of finite size. Said
another way, the stationary stochastic process generat-
ing the chain must be a finite-memory Markov process.

When the transfer matrix method fails, sometimes it
is possible to use an infinite dimensional matrix, i. e.,
an operator [47]. Another approach is the diagrammatic
perturbation expansions of statistical field theory where
one or several fundamental interactions are identified and
their contributions to the thermodynamic quantities in
question are summed up by considering more and more
complicated interactions [46,48].

Yet another approach to finding and utilizing struc-
ture in the joint probability distributions over configu-
rations relies on cycle expansion methods [49,50]. Here
one systematically approximates the partition function
by considering the contributions from fundamental pe-
riodic configurations of successively longer periods. A
particularly effective application of the cycle expansion
technique is the calculation of the Lyapunov exponent of
a product of random matrices [51].

The vantage point afforded by this brief overview sug-
gests classifying statistical mechanical systems by con-
sidering the type of mathematical entity—contiguous
blocks, operators, fundamental interactions, cycles—
needed to most efficiently “encode” their configurations
so that calculations of thermal averages can be per-
formed. In Sec. IV we shall see that the e-machines of
computational mechanics provide a formalization of this
idea.

III. INFORMATION THEORY

To appreciate the interpretation and use of information
theoretic concepts in the comparisons that we develop in
the following, an historical review is helpful. This will
be, of necessity, brief. The interested reader is strongly
advised to read basic reference works such as Refs. [3] or
[4].
In the late 1940’s Shannon founded the field of commu-
nication theory [3], motivated in part by his work in cryp-
tography during World War II. This led to a study of how
signals could be compressed and transmitted efficiently
and error free. His basic conception was that of a com-
munication channel consisting of an information source
that produces messages which are encoded and passed
through the channel. A receiver then decodes the chan-
nel’s output in order to recover the original messages.
Key to his analysis was the definition of the source’s rate
of information production, called the source entropy rate,
and the maximum carrying capacity, called the channel
capacity, of the (possibly noisy and error-prone) channel.

Much earlier, Hartley had proposed to measure the
amount of information from a source via the logarithm of
the number of possible source messages [52]. Shannon’s
definition of the source entropy adapted Hartley’s mea-
sure to account for probabilistic structure in the source:
some messages being more or less likely than others. He
interpreted the negative logarithm of a message’s prob-
ability as a measure of surprise: the more unlikely a
message the more informative it was, when it appeared.
This surprise, averaged over a source’s messages, is the
source’s entropy rate. The functional form of Shannon’s
entropy, as he realized, had already been developed by
Boltzmann in late 1800’s as a measure of disorder of ther-
modynamic systems [53]. In the following we will refer to
this and related quantities as Shannon entropy, however,
since it will be used in the sense intended by information
theory.

It is important to emphasize that the core of informa-
tion theory concerns not so much the various definitions
of information and entropy, but rather the relationship
between the source entropy rates that can be sustained
through channels and those channels’ capacities. These
connections are what makes the similarity between Boltz-
mann’s notion of thermodynamic entropy and Shannon’s
entropy rate so notable. Boltzmann clearly did not an-
ticipate Shannon’s use of entropy.

The primary results on which information theory is
built and with which it finds its technological applica-
tions are Shannon’s two central coding theorems. This
first theorem says that information cannot be transmit-
ted error-free through a channel at a rate higher the chan-
nel’s capacity. The second theorem says that as long as
the source’s rate respects this limit then there exists an
encoding and decoding scheme for the source’s messages
such that error-free transmission is possible and can oc-
cur at rates arbitrarily close to the channel capacity.



The mathematical foundations of Shannon’s commu-
nication theory followed quickly [54,55], as did a num-
ber of applications and important extensions. For exam-
ple, Jaynes re-introduced portions of information theory
back into statistical mechanics, reformulating ensembles
in terms of a maximum (Shannon) entropy assumption
under various constraints [56]. This was partly motivated
as an attempt to understand the role of probability in sta-
tistical mechanics and the similarities between statistical
mechanics and statistical inference [57]. For a readable
introduction to this approach to statistical mechanics see
Ref. [58]; a more thorough account can be found in [59].

The basic quantities used in information theory are
various forms of Shannon entropy: the entropy H of a
distribution, the information gain D of one distribution
with respect to another, and the mutual information I
between two distributions. When adapted and applied to
different communication problems, these are the quanti-
ties in which the results of the theory are expressed. It is
noteworthy that many uses of information theory in sta-
tistical physics and in nonlinear dynamics mostly employ
its basic quantities and do not use the more characteristic
and central aspects of coding.

A. Shannon Entropy, its Forms and Uses

Consider a discrete random variable X that assumes
values z € A. The Shannon entropy H[X] of X is defined
by:

HX]=- Z Pr(z) log, Pr(z) . (26)
zEA

Note that H[X] is a function not of x but of the dis-
tribution Pr(X) of X. H[X] may be interpreted as the
unique (up to a multiplicative constant) additive mea-
sure of uncertainty associated with a random variable
X; see App. 2 of [3]. If the information source produces
messages that are independent samples of X distributed
according to Pr(X), then the average number of yes-
no questions needed to determine a particular value z
is between H[X] and H[X] + 1. The unit of informa-
tion that answers a single yes-no question is called a bit.
This result is consonant with the interpretation of en-
tropy as uncertainty. The more uncertain we are about
an event, the larger the number of questions on aver-
age needed to ascertain the outcome [3,4]. Note that if
Pr(X) = U(X), the uniform distribution over z € X,
then H[X] = log, | A|.

The Shannon entropy of source X measures the aver-
age uncertainty of observing outcomes z if we expect the
outcomes to occur with probability P(z). But what if,
despite the actual events occurring according to P(X),
we have prior knowledge that leads us to expect the out-
comes are distributed with probability Q(z)? The rela-
tive information obtained in observing X is then given
by the information gain D(P|Q):

DIPIQ)= )Y Pl@)log[P()/Q@)], (27)

z€A:Q(z)>0

where we assume that if Q(z) =0, then P(z) = 0. D is
often referred to as a distance, but it is neither symmetric
in P and Q nor does it obey a triangle inequality. It
is, however, nonnegative, and is zero only when the two
distributions are equal. D(P|Q) is, in a sense, the number
of bits it takes to change distribution P into Q. Note that
D(P|U) = log, |A| — H[P).

It is possible to define joint and conditional entropies
[3,4]. Consider two discrete random variables, X and
Y, that assume values x € Ax and y € Ay, respectively.
Denote by Pr(z|y) the conditional probability that X = z
given that Y = y. The conditional entropy of X condi-
tioned on Y is defined by:

HXY]=- )

z€EAx, yEAy

Pr(z,y)log, Pr(zly) . (28)

It measures the average uncertainty in the conditional
distribution Pr(z|y). Note that H[X|Y] is not symmetric
in X and Y.

The joint entropy is defined by

H[X7 Y] =- Z PI‘(.’E, y) 10g2 PI‘(IL', y) (29)
T€EAx, yEAyY

and measures the average uncertainty associated with the
joint distribution Pr(z,y).

The mutual information I[X ;Y] between two random
variables X and Y is defined by [4,3]:

nx;vi=s >

z€EAx, yEAy

Pr(z,y)

Pr(z,y) log, Pr(@)Pr(y) (30)

The mutual information can be rewritten as the differ-
ence between a marginal and a conditional entropy:

I[X;Y] = H[X] - H[X|Y] . (31)

In other words, the mutual information measures the re-
duction in the uncertainty of X given knowledge of Y.
If the uncertainty of X is reduced, then we say that Y
carries information about X. This is why I is known as
the mutual information.

There are a number of basic properties of mutual in-
formation. First, it is nonnegative: I > 0. Second, I is
symmetric in X and Y; I[X;Y] = I[Y; X]. And, third,
for both independent sources and zero entropy sources,
I=0.

One of the main uses of mutual information is in the
definition of a channel’s information carrying capacity. If
the source is denoted X and the output of the channel is
denoted Y, then the channel capacity C is defined as

C=supl[X;Y], (32)
{x}

where the supremum is taken over all information
sources.



B. Entropy Growth

We now shift the emphasis back to analyzing spin
configurations. Consider again the bi-infinite sequence
...8 98 18505155 .... The average uncertainty of ob-
serving an L-spin block S* is given by the Shannon en-
tropy of the joint distribution Pr(s’) [4]:

H(L)=- Y Pr(s")log, Pr(s"). (33)
sbe AL

We define H(0) = 0 and, for later use, H(L) = 0,L <
0. The block entropy is nonnegative, H(L) > 0, and
monotonic in L; H(L) < H(L + 1). That is, adding an
additional random variable cannot reduce uncertainty [4].
A schematic plot of H(L) vs. L is shown in Fig. (1) for
a typical information source.

C. Entropy Density and Convergence to It

The spatial density of the Shannon entropy of the spin
configurations is defined by

_ . H(D)
hN = lim T ; (34)

where p denotes the measure over bi-infinite configura-
tions that induces the L-block joint distribution Pr(SL).
The quantity h, measures the irreducible randomness in
spatial configurations: the randomness that remains after
the correlations and structures in larger and larger spin
blocks are taken into account. For physical systems h, is
equivalent to thermodynamic entropy—S in Eq. (10)—
in units where kg/log,2 = 1. The entropy density is
also known as the entropy rate or the metric entropy,
depending on the application context.

H(L)

0 L

FIG. 1. Total Shannon entropy growth for a typical infor-
mation source: a schematic plot of H(L) versus L. H(L)
increases monotonically and asymptotes to the line E 4+ h, L,
where E is the excess entropy and h, is the source entropy
rate.
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The entropy density h, can be re-expressed as:
hy = Llim [H(L+1)— H(L)] . (35)
—00

Thus, we see that the curve’s slope as L — oo in Fig. (1)
corresponds to the entropy density hy,.

Eq. (35) can also be rewritten by using the conditional
entropy as defined in Eq. (28) [4]:

h, = lim H[S*|SE1
# L—oo
= lim H[SL,Sp—1,---,81|S0-1,S0—2,---,51]
L—oo
lim H[SL|51 ---SL—I] . (36)
L—oo

Thus, h, is the uncertainty of the next spin value sy,
conditioned on the first (L — 1) spins in the L-block,
as L — oo. This reinforces the interpretation of Ay,
as the irreducible randomness associated with the sys-
tem. Eq. (36) indicates that h, measures our uncertainty
about the variable S;, given knowledge of all the spins
that preceded it. In this sense h, measures, in units of
bits per site, the per-spin unpredictability of the infinite
string. Note that the entropy density is nonnegative;
hy > 0.

Egs. (34), (35), and (36) give different expressions for
the entropy density h,. These are all equivalent in the
present setting, though they need not be for nonequilib-
rium or nonstationary processes [60].

The entropy density is a property of the system as a
whole; only in special cases will the isolated-spin uncer-
tainty H(1) be equal to h,. This leads us to consider
how random the spin chain appears when finite-length
spin blocks are considered. This is given by

ho(L)= HL)—H(L-1), L=1,2,..., (37

the incremental increase in uncertainty in going from (L—
1)-blocks to L-blocks. Thus, since we’ve imposed the
“boundary condition” H(0) = 0, we have h,(1) = H(1).

Comparing Eq. (37) with Egs. (35) and (36), we see
that h,(L) may be viewed as the finite-L approximation
to the entropy density h,. Graphically, h,(L) is the two-
point slope of the H(L) vs. L curve; in other words, h,, (L)
is the discrete derivative of H(L). The convergence of
hu(L) to hy, is illustrated in Fig. (2). The entropy density
h, is indicated by a horizontal dashed line.



H(1) -

L

FIG. 2. Entropy density convergence: A schematic plot of
h, (L) versus L using the typical H(L) shown in Fig. (1). The
entropy density asymptote h, is indicated by the horizontal
dashed line. The shaded area is the excess entropy E.

D. Density, Rate, and Algorithmic Complexity

Coming back to the issue of describing the observations
of spin configurations we note that the entropy density
hy is equivalent to the growth rate of the Kolmogorov-
Chaitin (KC) complexity of spin configurations, averaged
over a given ensemble [4,22]. The KC complexity of an
individual configuration is defined as the length of the
minimal program that, when run, will cause a universal
Turing machine (UTM) to produce the configuration and
then halt. The KC complexity is sometimes referred to
as the algorithmic (or deterministic) complexity because
it demands a deterministic accounting for every spin in
the configuration. A random configuration by definition
possesses no regularities so it cannot be compressed. As
a result, a random configuration’s shortest description
is the configuration itself. Hence, we see that the KC
complexity is maximized by random configurations, as is
the entropy density h,,.

E. Redundancy

If h, < log, | A, the full information carrying capacity
of the alphabet is being underutilized. Said in a com-
plementary fashion, in this case the information source
produces sequences that have correlations. One measure
of these correlations is the redundancy [3]:

R =log, |A| — hy . (38)
There is no redundancy in a completely random

source, since by definition such a source has Pr(s’)
U(st), L=1,2,..., and so h, = log, |A|.
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F. Shannon’s Coding Theorems

Loosely speaking, the sequence of yes-no questions
leading to the identification of a particular outcome 2z of
the random variable X defines a code for that outcome.
One can show that the average (per symbol) length of
the optimal, uniquely decodable binary encoding for the
information source X lies between h, and h, +1 [4]. If
one tries to encode N copies of the variable X, the av-
erage length of the code approaches Nh, as N — oo.
Thus, the entropy rate h, of the random variable X can
also be interpreted as the average number of bits of mem-
ory needed to store information about the values X takes
[3.,4].

This view of entropy as average code length is in har-
mony with the notion of entropy as uncertainty. If we
are very uncertain about the outcome of an observation,
on average it will take a long code word to specify the
outcome when it occurs. If we are fairly certain what the
outcome will be, we can take advantage of this knowl-
edge by using short code words for the frequently occur-
ring outcomes. This strategy is employed in Morse code,
where the most frequently occurring English letter “E”
is encoded using the shortest symbol, one “dot”. Put
somewhat colloquially, then, the entropy rate measures
the average length required to describe observations of a
random variable.

Now that the entropy density (or rate) has been de-
fined we can quickly mention Shannon’s coding theorems
again in order to show the utility of the various entropies
just discussed and also to highlight one difference in mo-
tivation between information theory and statistical me-
chanics. The first coding theorem states that if h, > C,
the information source cannot be transmitted without er-
rors. The second says that if h, < C, then there exists
an encoding of the source messages that produces a new
source whose rate is less than, but arbitrarily close to
C. And so, by the first theorem, the source messages
can be carried error free in a noisy channel of capacity
C and correctly decoded. Exactly how one finds these
encoding schemes is not specified by the theory, though
many techniques have been developed since information
theory’s introduction.

G. Two-Spin Mutual Information

We can use the mutual information to define an in-
formation theoretic analogue of the two-spin correlation
functions discussed above. The two-spin mutual infor-
mation is defined by

I(r) = 1[0 Sy , (39)
and measures the information shared between two spins
separated by r sites. Using the translation invariance of
spin configurations it follows that:



I(r) = 2H[So] — H[So, S,] - (40)

Note that I(0) = H(1) and that for a typical source
I(r) is monotone decreasing, I(r) > I(r + 1). For the
special case of binary sequences in which I'(r) vanishes
asr — oo, I(r) ~T%(r), r > 1[61].

H. Excess Entropy

The entropy density h, measures the per-spin unpre-
dictability of infinite configurations. However, h, says
little about how difficult it is to perform this prediction.
For example, consider two periodic configurations: one
of period 4 and one of period 1969. Both have zero en-
tropy density, indicating that once the periodic pattern
is gleaned there is no uncertainty about the subsequent
spins. But there are important (and obvious) differences
between the two configurations. It seems clear that, in
some sense, the period-1969 configuration is “harder”
to predict than the period-4 configuration; a distinction
that is missed by stating h, = 0. For example, one would
imagine that the configuration with the longer period re-
quires much more memory to predict than that with the
short period. How can we formalize the notions of “mem-
ory” and “difficulty” of prediction? For the remainder of
this section and the following one, we shall be concerned
with stating this question more clearly and then answer-
ing it.

We begin our consideration of memory by observing
that the length-L approximation to the entropy density
hyu(L) overestimates the entropy density h,. Specifically,
hy, (L) overestimates h, by an amount h,(L) — h, that
measures how much more random single spins appear
knowing the finite L-block statistics than knowing the

statistics of the infinite configurations <§ In other words,
this excess randomness tells us how much additional in-
formation must be gained about the configurations in
order to reveal the actual per-spin uncertainty h,. More
precisely, the difference h,(L) — h, is a form of redun-
dancy, as discussed in section IITE above. Though the
source appears more random at length L by this amount,
this amount is the information-carrying capacity in the
L-blocks that is not actually random, but is due instead
to correlations. We conclude that entropy convergence is
related to a type of memory.

There are many alternative ways in which the finite-L
approximations h, (L) converge to their asymptotic value
hy. Recall Fig. (2). Fixing the values of H(1) and h,,
for example, does not determine the form of the h, (L)
curve. At each L we obtain additional information about
how h, (L) converges, information not contained in the
values of H(L) and h,(L) at smaller L. Thus, roughly
speaking, each h,(L) is an independent indicator of the
manner in which h, (L) converges to hy,.

Given that each increment h,(L) — h, is an indepen-
dent contribution in the sense just described, we sum up
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the individual L-redundancies to obtain our candidate
measure of memory. The resulting quantity is the total
excess entropy [10,12,13,15,17,18,62]:

E=) [h(L)—h]. (41)

Graphically, E is the shaded area in Fig. (2). If one
inserts Eq. (37) into Eq. (41), the sum telescopes and one
arrives at an alternate expression for the excess entropy:

E = lim [H(L) - h,L] .

L—oo

(42)

Hence, E is the y-intercept of the straight line to which
H(L) asymptotes, as indicated in Fig. (1). For the
sources considered here the excess entropy is nonnega-
tive, E > 0.

Looking at Eq. (41), we see that, informally, E is
the amount in bits, above and beyond h,, of apparent
randomness that is eventually “explained” by consider-
ing increasingly longer spin blocks. Conversely, to see
the actual (asymptotic) randomness at rate hj,, we must
extract E bits of information from observations of spin
blocks. We expect a large E to indicate a large amount of
structure: E is large if there are long-range correlations
that account for the apparent randomness observed in
distributions over small spin blocks.

This interpretation is strengthened by noting that E
may be expressed as the mutual information I between
the two semi-infinite halves of a configuration;

— =
E =I[S; 5] (43)
Note that this form makes it clear that E is spatially
symmetric. Recalling that the mutual information can
also be written as the difference between a joint and a
conditional entropy:

1[S; 5] = H[S] - H[S | 5], (44)

we see that E measures the average reduction in uncer-
— —
tainty H[S] of the left-half configuration S, given knowl-
—
edge of §. One must interpret Egs. (43) and (44) with

care since they contain entropy contributions, like H [E’],
that individually may be infinite—even for a fair coin
process.

Eqgs. (43) and (44) allow us to interpret E as a measure
of how much information one half of the spin chain car-
ries about the other. In this restricted sense E measures
the spin system’s apparent spatial memory. If the config-
urations are perfectly random or periodic with period 1,
then E vanishes. Excess entropy is positive between the
two extremes of ideal randomness and trivial predictabil-
ity. This property ultimately derives from its expression
as a mutual information, since the mutual information
between two variables vanishes either (i) when the vari-
ables are statistically independent or (ii) when they have



no entropy or information to share. These extremes cor-
respond to E vanishing in the cases of ideal randomness
and trivial predictability, respectively. Finally, E mea-
sures the average degree of statistical independence of
the two halves of a spin chain—how “indecomposable”
the chain is.

Note that all three expressions for the excess entropy,
Egs. (41), (42), and (43), indicate that E carries units
of bits. This is clear in Eq. (43), since the mutual in-
formation has units of bits. The entropy density, h, has
units of bits per site, and L, the length of a spin block,
has units of lattice sites. Hence, both terms on the right
hand side of Eq. (42) have units of bits, so it follows that
the left hand side, E, must have units of bits as well.
Lastly, Eq. (41) tells us that E is the shaded area in
Fig. (2). The y-axis of Fig. (2) has units of bits per site
while the z-axis has units of lattice sites. Since E is an
area on Fig. (2), it has units of bits.

It follows immediately that any periodic sequence of
period P has E = log, P. Returning to the example at
the beginning of this section, then, we see that a period-
1969 sequence has an excess entropy log, 1969 ~ 10.94
bits, while the period-4 sequence has an excess entropy
of log,4 = 2 bits. Thus, as anticipated, the period-
1969 sequence does indeed possess more memory than
the period-4 sequence.

I. Correlation Information

In the previous section we interpreted the excess en-
tropy as the total amount of information that must be
extracted from measuring L-blocks in order to recover the
asymptotic entropy density—that is, to see just how ran-
dom each spin is. The entropy convergence plot, Fig. (2),
is the discrete derivative, with respect to block length L,
of the entropy growth curve H(L) of Fig. (1). What if
we take more discrete derivatives of H(L)? It turns out
that the second derivative of H(L) recovers the corre-
lation informations k(L) of Refs. [17,63] and allows for
another interpretation of excess entropy.

We follow Refs. [17] and [63] and define the correlation
information k(L) of order L as

ZPr

{s*}

Pr(sp_1|s""?)

) log, —Pr(sL_2|sL 3 - (45)

It is easy to see that k(L) = h,(L)—h,(L—1). Thus, the
correlation informations are indeed a discrete derivative
of the entropy convergence function h,(L). These quan-
tities have a useful interpretation as the information gain
between distant spins [63] and so are somewhat similar
to the two-point mutual information just introduced.
From the boundary conditions on H(L), we see that
k(1) hy(1) H(1). Note that limp_,, k(L) = 0.
Under suitable assumptions about the source’s structure,
it follows from the definition that the excess entropy is
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directly related to the correlation informations according
to

(46)

E= i Lk(L)
L=1

In this form, E appears as type of correlation length: E
is an average length in which the average is weighted by
the correlation informations [17,63].

J. Information Theoretic Approaches to Structure in
Dynamics, Statistical Physics, and Elsewhere

The total excess entropy was used by Crutchfield
and Packard in Refs. [12,64-66] to examine the entropy
convergence for noisy discrete-time nonlinear mappings.
They developed a scaling theory for the entropy rate
convergence: h, (L) — h, o 277F, where, for Marko-
vian finite-memory chains, the excess entropy and en-
tropy convergence exponent vy are simply related: E =
(H(1) — h,)/(1 — 277). Analytical calculations of en-
tropy convergence for some simple discrete-time nonlin-
ear maps were carried out by Szépfalusy and Gyorgyi
[13]. Excess entropy was recoined “stored information”
by Shaw [15] and subsequently “effective measure com-
plexity” by Grassberger [10]. These two authors empha-
size the entropy growth view shown in Fig. (1). E has
been discussed in the context of cellular automata by
Grassberger [10] and by Lindgren and Nordahl [17]. Ex-
cess entropy was also mentioned briefly by Lindgren in
Ref. [62]. The quantity is simply called “complexity”
applied to several stochastic automata by Li [18].

There have been other prior discussions of using in-
formation theory to measure a source’s structure. For
example, mutual information has been proposed as a
measure of self-organization [67,68]. Watanabe [69] and
Kolmogorov [70] take approaches that are different, yet
again. The latter is particularly notable, though brief,
for how its discussion of source structure parallels the
philosophies of model inference by minimum message
length [71] and minimum description length [72] found
in the theories of model order estimation and universal
source coding. Both of these approaches address the dis-
covery of source structure, though not as directly as con-
cerns us here.

A number of the above notions have also recurred in
more recent discussions of modeling information sources
[20,73]. See also the references in [74] and the critical
evaluation there of information theoretic notions of com-
plexity and structure.

It should be emphasized that there are subtle but sig-
nificant differences in these works’ notions of effective
complexity, memory, and information. For example, ex-
cept for Refs. [71] and [72] which are concerned with in-
ductive inference, almost none of the above references
pay attention to minimal representations. Minimality is
crucial for being able to conclude that a given quantity



estimated from a model actually describes an intrinsic
structural property of a process and is not an artifact of
some unarticulated representational choice—a key issue
to which we shall return repeatedly in the following.

The preceding observations on the nature of entropy
convergence stay within the framework of information
theory—a largely statistical view of “structure”. These
quantities and a number of the preceding observations
have been known for at least a decade and a half, if not
longer.

IV. COMPUTATIONAL MECHANICS

In the previous section we saw that the excess entropy
E provides a measure of the apparent spatial memory
stored in configurations. However, excess entropy and
the apparatus of information theory tell us nothing about
how the system’s memory is organized and utilized. Com-
putational mechanics [2] addresses this issue by paral-
leling and extending the architectural analyses found in
discrete computation theory. (Basic textbooks for the
latter are Refs. [75] and [76].) In explicitly considering
how the system produces the apparent spatial memory
E, we shall be led to put forth another measure of in-
trinsic memory, known as the statistical complexity and
defined as the minimum amount of memory needed to
statistically reproduce the original configuration (and the
ensemble from which it comes). This is a different inter-
pretation of memory than given to the excess entropy.
Sections IVE 6 and V A 6, however, will show that these
two notions of memory are related. This additional set
of theoretical tools allows us to describe structure and
information processing at a more detailed and complete
level than possible via information theory alone.

Like statistical mechanics, computational mechanics is
concerned with a large system consisting of many indi-
vidual components. However, computational mechanics
addresses very different issues. The motivating questions
of computational mechanics center around how a system
processes information: How is information stored, trans-
mitted, and transformed? How much memory is needed
to statistically reproduce an ensemble of configurations
and how is this memory organized? In general, we are in-
terested in inferring the intrinsic computation being per-
formed by the system itself.

By intrinsic computation [28] we mean something very
different than “computation” as the word is typically ap-
plied either in reference to the use of modern digital com-
puters as tools for simulation or for symbolic manipu-
lation (e.g., as found in the Journal of Computational
Physics) or in reference to the use of a device to perform
useful information processing for some person or machine
(as in updating a spreadsheet or determining the five bil-
lionth digit of 7). Useful computation usually entails
fixing the initial conditions and control parameters of a
dynamical system so that the outcome contains some in-
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formation of interest to us, as outside interpreters of the
result [77]. For example, we might employ the mapping

1 a
mn+1:§($n+x_);$0:1;
n

(47)

which has the useful property that lim, . z, = +/a [78].
This iterative procedure for increasingly accurate esti-
mates of roots was reported by Hero of Alexandria [79]
in the first century B.C.

In contrast, when we ask about intrinsic computation,
we are interested not in manipulating a system to pro-
duce an output that is useful to us—which is akin to an
engineering stance towards nature. Instead, we are inter-
ested in examining the information processing that the
system itself performs and the underlying mechanisms
that support it—which is more of a scientific stance: ex-
ploring how nature works on its own terms.

As a concrete example, consider the two-dimensional
nearest-neighbor Ising model at the critical temperature.
Here the correlations between spins decay with a power
law as a function of distance, yet the total magnetization
of the system remains zero. Computational mechanics is
concerned with what sorts of effective information pro-
cessing the system must perform to reach and maintain
the critical state. How much historical and spatial mem-
ory is required? How is the memory organized internally?
What spatial patterns result? Are the critical configura-
tions in any way “harder” to reach than those found at
low or high temperatures? More informally, how does
the system balance up and down spins so that the corre-
lations decay as a power law, while keeping zero magne-
tization?

Whereas statistical mechanics starts with a system’s
Hamiltonian or a description of its constituents’ local
space-time behavior and interactions, computational me-
chanics begins with the joint probability distribution over
the state space trajectories. With knowledge of this joint
distribution, the intrinsic computation being performed
by the system can be determined. By not requiring a
Hamiltonian, computational mechanics can be applied in
a wide range of contexts, including those where an energy
function for the system may not be manifest.

In any case, as noted above, the two microscopic start-
ing points in the many-body setting—a Hamiltonian or
the joint probabilities of configurations over time—are
related (at equilibrium) to each other by the usual canon-

ical ensemble,
Pr(C) o« e PHO) (48)

where C is a configuration, 8 the inverse temperature,
and H the system’s Hamiltonian.

A. Effective States: Preliminary Examples

Rather than launching into the mathematical develop-
ment, we begin our review of computational mechanics



with several very simple examples. These will lead quite
naturally to the definitions put forth in the subsequent
section.

The questions we shall be addressing for each exam-
ple are: How can one statistically reproduce a given infi-
nite configuration using the minimal amount of memory?
In particular, how much information about the left half
must be remembered to produce the right half? Here
statistically reproduce refers to the ability to generate in-
finite configurations whose finite-length spin blocks occur
with the same probabilities as those in the original, infi-
nite configuration.

Another, equivalent way of stating these questions is:
How much memory is needed to optimally predict config-
urations? And, how is this memory organized? We de-
fine an optimally predictive model in the following way.
Suppose we have a model that uses a given amount of
historical information to make its predictions. Then we

observe L spins s” in a configuration described by Pr(?).

Using this information the model produces an estimate
lg\r(s|sL ) of the probability of the next spin s. We say that
the model optimally predicts the configuration if and only
if Pr(s|s’) = Pr(s|s") for all s* and all s, where Pr(s|s%)

is obtained directly from Pr(?).

1. Fair coin configuration

Consider a string of heads (H) or tails (T) generated
by a fair coin toss:

>

s =---THTTTHHHHHTHTHTTHHT --- . (49)
By definition all tosses are independently distributed; the
probability that any particular toss is a heads is 1/2 and
any particular length-L block has probability 2=F. We
begin by asking: How much of the left half is needed to
predict the values in the right half? Restated, imagine
walking down the string from left to right, noting the
state of the variables one observes. After a very long
time—long enough for one to have observed as many
tosses as desired—how many of the preceding variables
must one keep track of in order to optimally predict those
encountered later?

A moment’s reflection reveals that one does not need
to keep track of any variables. Since the coin tosses are
independent, knowledge of previous tosses does not re-
duce the uncertainty about the next toss. As a result, for
this particularly simple example no memory is required
to optimally predict subsequent variables. Here, the pre-
dictions are as good as they can be (i. e., optimal), which
admittedly is not good at all. The uncertainty about the
next coin toss is complete. The result could be either
heads or tails with equal probability, as reflected by an
entropy rate b, of 1 bit per toss for the fair coin.
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FIG. 3. The probabilistic finite-state machine for fair coin
tosses. This machine is a model of the original configuration in
the sense that a random walk through the machine—making
state-to-state transitions following the edges, denoted s|p ac-
cording the their labeled probability p—produces a sequen-
tial configuration of symbols s; € A with the same statistical
properties as the original . For more discussion, see text.

What must one do in order to perform this optimal
prediction? Equivalently, how can one statistically re-
produce the configuration? The answer to these ques-
tions is illustrated in the probabilistic finite-state ma-
chine of Fig. (3), which compactly tells us how to re-
produce strings with the same statistics as the original
configuration.

The machine operates as follows. Start in state A.
With probability 1/2 generate an H and return to state
A. And with probability 1/2 generate a T and also re-
turn to state A. A random walk through the machine
following these rules results in a string of H’s and T’s

that is statistically identical to %", In this sense we say
that the machine constitutes a model of the original fair
coin process.

It is important to emphasize that no larger machine—
i.e., with more states or edges—is required to reproduce
all strings in the class of which % is one realization. Nor
is any smaller machine capable of doing so.

2. Period-1 configuration

Consider a string consisting of a sequence of all b’s:

B

s = ---bbbbbbbbbbbbbbbbbbbb - - - . (50)
As with the fair coin, it is clear that one doesn’t need to
remember any of the previous symbols to perform opti-
mal prediction. The value of the next variable will be a
b regardless of the values of the previous variables.

bl @

FIG. 4. The finite-state machine for a string consisting of
all b’s.



B
The finite-state machine for 5 is shown in Fig. (4).
From state A, the machine always outputs the symbol b
and returns to state A. In this way the machine statisti-

B
cally reproduces ", Tor this example the prediction is
error free, as reflected in the fact that h, = 0.

3. Period-2 configuration

Now consider an infinite, alternating spin configura-
tion:

EAIERERS RS NN N R

Again, we begin by asking: How much of the left half
is needed to predict spins in the right half? Here, some
memory is needed to keep track of the phase of the alter-
nating spin pattern. As long as this phase is remembered,
one can optimally and exactly predict all the subsequent

(51)

spins. As with the period-1 configuration, %7 can be
predicted with certainty since its entropy density is also
h, = 0. But to achieve this certainty, one must distin-
guish between the pattern’s two different phases. As a

) 2
result, the state machine for s has (at least) two states,

as indicated in Fig. (5).

FIG. 5. The recurrent portion of the finite-state machine
for the period-2 configuration 7 of Eq. (51). Note that this
machine has two states while the machines of Figs. (3) and (4)
have only one state. This is an indication that the --- 11}t -- -
configuration requires more memory to reproduce.

il

il

How can we use the machine of Fig. (5) to repro-

duce 577 Unlike the previous examples, it is not clear
where to begin: state B or state C? One response—
consonant with assumptions implicit in equilibrium sta-
tistical mechanics—is that it doesn’t matter. If we run
the system for infinitely long we will statistically repro-
duce the original configuration. The starting state is just
a “boundary condition” whose effects are negligible in
the thermodynamic limit.

However, in another sense, the state in which we start
most definitely does matter. Suppose we choose to start
always in state B. We then examine all the length-3
spin blocks generated by this choice. We see that the
string |1 is generated with probability 1. Yet in the

original configuration 3" we observe Pr(1}1) = 1/2 and
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Pr(Jt}) = 1/2. The machine of Fig. (5) doesn’t correctly
predict the statistics of the configuration.

There is an easy remedy for this situation: start in
state B half the time and state C half the time. We can
achieve this by adding a start state to the model. This
is shown in Fig. (6). We now always begin operating
our model in the unique start state A. In Fig. (6) and
all subsequent figures the start state is indicated by a
double circle. The new, improved model generates spin
blocks that exactly reproduce the distribution of finite-
length spin blocks observed in the original configuration.

In this example, the start state is a transient state. It
is never revisited after the machine outputs the first spin
value and moves to state B or state C. The states B
and C in Fig. (6) are recurrent, being visited infinitely
often as the machine is operated. When examining ma-
chines obtained from one-dimensional spin-1/2 Ising sys-
tems, we shall encounter examples where the start state
is a recurrent state; as was done, but not mentioned, in
Figs. (3) and (4). We shall also see machines that have
more than one transient state and that have more com-
plex transient transition structures.

FIG. 6. The full probabilistic finite-state machine for the
period-2 configuration S7. The start state A is indicated
by the double circle. A is a transient state; it is never visited
again after the machine outputs the first spin. States B and C
are recurrent; they are visited infinitely often as the machine
outputs an infinite spin configuration.

4. Noisy period-2 configuration

Finally, consider an infinite binary string in which ev-
ery other symbol sampled from the alphabet A = {0,1}
is a 0, but otherwise the symbols are unconstrained:

]
§" =...01010001010100010000000100010 - - - . (52)

Figuring out how to build a model capable of reproducing
this configuration is perhaps not as straightforward as



in the previous examples. The key realization is that
once we observe a single 1 we are “synchronized” to the
pattern. That is, after seeing a 1, a 0 must follow, since
the configuration never exhibits two adjacent 1’s. After
seeing the 0 that follows the first 1, a 0 or a 1 can occur
with equal probability—the only rule is that every other
symbol is 0. The probabilistic finite-state machine for
this configuration is shown in Fig. (7).

03/4

FIG. 7. The probabilistic finite-state machine for the noisy

s
period-2 configuration 5 Again, the start state A is a tran-
sient state and states B and C are recurrent.

Note that the uncertainty associated with predicting
the next symbol changes as one moves back and forth
between state B and state C. From state B there is
no uncertainty—a 0 is always the next symbol. From
C there is an associated uncertainty of 1 bit, since the
next symbol is equally likely to be a 0 or a 1. Thus, the
entropy density is h, = 1/2 bit per symbol. It should
be not be immediately obvious how we determined the
probabilities for transitions leaving state A. For this, we
will need to review the general procedure for building
such machines, as will be done below.

5. Summary of examples

Despite the examples’ simplicity, a few summarizing
remarks are in order before moving on to formalize the
notion of “effective” state that we’ve just used implicitly.

64
First, note that the coin-toss configuration S and the

period-1 configuration ?ﬂ both result in a machine with
only one state, an indication that we don’t need to re-
member any information about the previous symbols to
predict the values of the next. Thus, predicting a per-
fectly random process and a process with a very simple
configuration are both “easy” tasks in the sense that they
require small machines.

Second, note that entropy rate h, manifests itself
(roughly) as the degree of branching in the machines,
measured as the logarithm of the ratio of the number of
edges to the number of states, in the recurrent portion
of the machines. For example, in Fig. (3) there are two
edges leaving one state. The entropy rate is 1 bit per
symbol.
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Third, note that the structure of the machines does
not depend on the variables’ values—all that matters are
the probabilities over configurations. For example, if the
symbols H and T are changed to 1 and |, the machine
of Fig. (3) will output different symbols, but its overall
structure remains unchanged.

Fourth, transient states tell one how the machines syn-
chronize. For the period-2 example, we argued that the
transient state A of the machine in Fig. (6) was nec-
essary so that the machine would faithfully reproduce
the distribution over finite-size blocks. Equivalently, the
transient states are necessary for synchronizing the ma-
chine if one is reading in data from the configuration.
Before any symbols are parsed, one does not know in
which internal state the process was as it produced sym-
bols in the configuration. This state of ignorance cor-
responds to the start state. Transitions are then taken
from the start state corresponding to the symbols ob-
served as the configuration is parsed. The number and
structure of the transient states determine how difficult it
is to synchronize—i. e., to determine in which recurrent
state the system is as it produces each symbol.

Lastly, note that we have taken care to construct min-
imal machines. That is, the machines we’ve put forth are
such that if one removes any state or transition then one
can no longer exactly statistically reproduce the config-
uration. This notion of minimality will be made more
precise below. In complementary fashion, in each exam-
ple one gains no predictability by elaborating any of the
machines by adding states or transitions.

B. Causal States and e-Machines

The preceding section considered models capable of re-
producing the distribution of all finite length blocks ob-
served in several translationally invariant configurations.
This section presents a general procedure for constructing
such models—minimal, optimally predictive, probabilis-
tic state machines.

First, we need to formalize the intuitive arguments
through which the “effective” states of the four exam-
ple systems were discovered. The key step is identifying
the notion of effective state with the conditional prob-
ability distribution over right-half configurations. And
a central criterion is that the resulting model be mini-
mal. When constructing an optimally-predictive, mini-
mal state-machine description, there is no need to distin-
guish between different left-half configurations that give
rise to an identical state of knowledge about the right-half
configurations that follow it. Maintaining a distinction
between two such states adds to the model’s size with-
out increasing its predictive ability. Therefore, we will
be looking for the smallest set of predictive states.

To make these ideas precise, consider the probability

distribution of all possible right halves s conditioned on

L L
a particular left half §; of length L at site i: Pr(? |f§ ),



0<L<L . For L =0, fs’_,-L is the empty string, de-
noted by A. That is, Pr(3 [5 ) = Pr(3 |\) = Pr(3)
denotes the probability of observing s unconditioned on
any spins in the left half of the configuration.

We now use this form of a conditional probability to
define an equivalence relation ~ on the space of all left
halves. We say that two left-half configurations at dif-
ferent lattice sites are equivalent (under ~) if and only if
they give rise to distributions over right-half configura-
tions, conditioned on those left-halves, that are identical.
Formally, we define the relation ~ by:

K
Si

L K L
~s; i Pr(s 5 ) =Pr(s 15 ),  (53)

for all ?, where K, L = 0,1,2,....

alence classes are subsets of the set of all allowed fs’_,-L.
Appendix A reviews various properties of equivalence re-
lations.

In a setting in which the conditional probabilities

The induced equiv-

Pr(g> |.<9_,L) aren’t known exactly, it becomes necessary
as a practical matter to introduce some tolerance into
the equivalence relation defined by Eq. (53). Implement-
ing this is not a straightforward task, since if one adds

. —K +«L - K
a tolerance ¢ and writes s; ~ s; iff Pr(s |s; )

Pr(?s> |f9_JL) + 4, the equivalence relation is destroyed be-
cause ~ is no longer transitive; see App. A. We will
address the issues surrounding the implementation of a
tolerance elsewhere. Suffice it to say that the basic diffi-
culty this introduces is common to other inference prob-
lems that involve statistical clustering and classification
[80,81]. Since we are focusing here on processes for which
one can perform the necessary calculations analytically,
statistical estimation will not be a concern.
The equivalence classes over

(_L

{5 ,i=...,-2,-1,0,1,2,... ,L=0,1,2,...} (54)
induced by this relation are called causal states and de-
noted S,, a = 0,1,2,.... The S, are the “effective

states” of the previous section. Two <§L belong to same
causal state if, as measured by the probability distribu-
tion of subsequent spins conditioned on having seen each
particular left-half configuration, they give rise to the
same degree of certainty about the configurations that
follow to the right.

We shall use the convention that causal states S,
are generically indexed using Greek letters. Spin vari-
ables shall continue to be indexed with Roman letters.
The equivalence class associated with Pr(? [A) is al-
ways the start state, since this distribution corresponds
to the knowledge about right-half configurations before
any spins are observed. The start state is denoted Sp.

The causal states, as determined by the equivalence
classes induced by Eq. (53), give transient as well as re-
current states. Although they may be visited an infinite
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number of times, transient states are those causal states
that have vanishing probability in the K, L — oo limit.
In contrast, recurrent states are those visited infinitely
often and have positive probability in the same limit.
That is, the recurrent states are those equivalence classes
obtained when the K,L — oo limit is considered in
Eq. (53). By considering how the process synchronizes—
i.e., how it reaches the recurrent states as successively
longer blocks are generated—it is possible to construct
the transient states and their transitions from knowledge
of the recurrent states alone. The procedure by which
this is done is given in App. B.

We denote the set of causal states by S = {Sy,a =
0,...,k—1}. For the processes considered here S is dis-
crete and k = |S] is finite—neither of which necessarily
holds in a general setting [2,27]. Let S(*) denote the set
of transient states and S®) denote the set of recurrent
states. Note that S = S(T) U S,

There is a mirror image definition of causal states ob-
tained by scanning the lattice in the opposite direction
(right to left); which thus uses distributions conditioned
on right-half configurations. Since we will study a re-
stricted class of systems that respect this symmetry, the
causal states will be the same regardless of the scanning
direction. In the general case, in which this reversal sym-
metry need not hold, it is possible to find different causal

states if one scans s in different directions [28].

Assuming scan-direction invariance, the causal states
factor the joint distribution over configurations into con-
ditionally independent distributions:

Pr(s) = Pr(’s |S.)Pr(s |Sa) - (55)

That is, knowledge of the causal state determines the left-
and right-half semi-infinite distributions. Put another
way, the causal states are the (minimal) set of objects
required to specify the entire joint distribution. Note that
searching for and utilizing conditional factorings of joint
distributions are central concerns of statistical models for
artificial intelligence and machine learning [82,83].

As we saw above, for the period-2 system there are 3
causal states, denoted in Fig. (6) by A, B, and C. These

causal states are subsets of the allowed s :

A ={}\}, (56)
B= {§L|871 =1,5_2 =|,8; = si42, L > 1}
= {13 (57)
and
C={5"]s 1 =bys > =t = 5112, L > 1}
= {4 NI, (58)

Here S = {A,B,C}, S = {A}, and S® = {B,C}.
Once the set S of causal states has been identified, we

determine the transition probabilities T(is) between states
upon seeing symbol s € A. That is, we need to find:



T = Pr(Sp, 5|Sa) - (59)
To understand the nature of the transition probabilities
better, we rewrite Eq. (59):

Pr(Sg, 5|Sa) = Pr(Ssls, Sa)Pr(s|Sa) - (60)
Knowledge of the next spin’s value s uniquely deter-
mines the subsequent causal state Sg. To see this, note
that moving one step to the right corresponds to moving

from ‘5, to <§,~+1 = {E,-s. The new left-half configuration

?i+1 is associated with one and only one causal state.
Hence, observing the next spin value s determines the
next causal state Sg, as the chain is parsed from left to
right.

This is the sense in which the causal state representa-
tion is deterministic. A transition from state a to state
(B while outputting a symbol s is uniquely determined by
o and s. That is, Pr(Sg|s,Sa) = 1, assuming the tran-
sition is allowed. To illustrate this, consider the noisy
period-2 machine of Fig. (7). From state B, outputting
a 0 leads one to state C. And from state C, seeing a 1
determines that the next state will be B. Note, however,
that knowledge of the initial and final causal states does
not determine what symbol was produced as the transi-
tion was made. For example, either a 0 or a 1 can be
produced upon a transition from state C to B.

Eq. (60) indicates how to obtain the transition proba-

bilities Ta(fﬂ) = Pr(s|Sy) from the joint probabilities over

L
configurations. Let 5 = 8081 --+Sr,_1 be a spin block
that leads to, and belongs to, the causal state S,. Then:

Pr(sps1...50-15)
T —p - .
af I‘(SlSa) Pr(S()Sl . SL—I)

(61)

where 3 indexes the causal state Sg to which one is taken
on s. In other words, sgs1...5,-15 € Sg.

Summing over the spin values s, we obtain the stochas-
tic connection matrix T = ) _ 4 T®), a matrix whose
components T,z give the probability of a transition from
the ot? to the B causal state;

Top = Pr(Ss|Sa) - (62)
Since the probabilities are normalized, ) 5 Tap =1, and
so T is a stochastic matrix. That is, the probability of
leaving a state is unity. The probability Pr(S,) of finding
this “internal” Markov chain in the a'® causal state after
the machine has been scanning infinitely long is the left
eigenvector of T associated with eigenvalue 1, normalized
in probability. That is, Pr(S,) is given by:

3" Pr(Sa)Tas = Pr(S5) (63)

Again, the asymptotic probability of all transient states
is zero;
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Pr(S,) =0, S, € ST . (64)
For the period-2 machine of Fig. (6) we have:

01/20

T=N =10 0 0 (65)
01 0

and

00 1/2

T=Y=100 1 |, (66)
00 0

where we take column and row labels to correspond to
causal states in the natural way: 1 — A,2 — B, and so
on. We add Egs. (65) and (66) to obtain the machine’s
stochastic connection matrix:

01/2 1/2
T=|0 0 1 (67)
01 0

Note that T is stochastic and its dominant left eigen-
vector, normalized in probability, is (0,1/2,1/2). Hence,
Pr(S = A) = 0 and Pr(§ = B) = Pr(S = C) = 1/2.
The asymptotic probability of the transient state A is
zZero.

The set S together with the dynamic {T(®),s € A}
constitute a model—referred to as an e-machine [11]—
of the original process. The four example machines of
the previous section, Figs. (3), (4), (5), and (7), are all
e-machines. An e-machine is the minimal representation
that captures the intrinsic computation being performed
by the system under study in the sense that it explicitly
lays out how information in the left-half configuration
is stored in the causal states and determines the range
of right-halves that can be seen. In other words, an e-
machine shows how much memory a process has, how it
is organized, and how it is used to generate the pattern
exhibited by the process.

The minimality of the e-machine follows immediately
from the definition of the equivalence relation, Eq. (53).
The equivalence classes induced by the relation are asso-
ciated with the causal states. The procedure of forming
equivalence classes ensures that we distinguish between
only those states that give rise to different predictive in-
formation. As a result,

Pr(s|Sqa) # Pr(s|Sg) , (68)
for a # B and for at least one value of s. Recall that we
demand that the e-machine be capable of statistically re-
producing the original configuration. If we make our ma-
chine smaller by merging two states, say a and 3, then it
follows immediately from Eq. (68) that the machine will
no longer be able to exactly statistically reproduce the
original configuration since it fails to distinguish between
the different conditional probabilities of Eq. (68). Thus,
we conclude that an e-machine is minimal.



The “€” in the e-machine signifies that, in general, the
measurement values s € A are not direct indicators of the
observed process’s internal states [28]. For example, the
symbols may be discretizations of variables that are con-
tinuous in state, space, or time. For spin systems these
concerns are not at issue, since we know by definition the
full set of elementary measurement values, i. e., the range
of spin values at each site.

In the following, we determine e-machines beginning
with the Hamiltonian assumed for our model spin sys-
tems. However, as mentioned above, a Hamiltonian is
not necessary. The determination of an e-machine does
not depend on knowledge of the dynamics or rule through
which the configurations were generated. Moreover, the
causal states and their transition probabilities may be
calculated within two different paradigms; one mathe-
matical, the other empirical. In the first, one begins
with the joint distribution over all the system variables.
In the second, one is given configurations from which
the joint and various conditional distributions are esti-
mated. The overall procedure in the second setting is re-
ferred to as e-machine reconstruction. In either case, the
goal is to factor the joint distribution over spin config-
urations into the causal state conditional distributions.
The result is an e-machine that consists of the compo-
nents {S, {7}, A, Sy}, where Sy € S is the e-machine’s
unique start state.

C. Related Computational and Statistical Model
Classes

Restricting attention to e-machines’s for 1D finite-
range spin systems, if we strip off their transition prob-
abilities, leaving just the allowed transitions, we change
the e-machine representation into a special class of deter-
ministic discrete-state automata [75,76]. Unlike the gen-
eral class of automata, these nonprobabilistic e-machines
have the following properties: (i) a unique start state,
(ii) all states are accepting, (iii) all recurrent states form
a single strongly connected component in the machine’s
state transition graph.

A further restriction on these nonprobabilistic e-
machines is that there is a specific relationship between
the structure of the transient states and the recurrent
states. (This relationship does not hold in general for
discrete-state automata.) That is, the nonprobabilis-
tic e-machine’s transient states can be constructed from
knowledge of the recurrent causal states alone. Appendix
B gives a procedure that determines this relationship for
the unrestricted, probabilistic case.

Unlike discrete-state automata, however, e-machine
transitions are labeled with conditional probabilities
TCEZ) Said differently, an e-machine represents a config-
uration distribution, not just a set of allowed configura-
tions, as the automata do. Therefore, in important ways
e-machines are a richer class of representations.
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e-machines can also be viewed as a type of Markov
chain. First, the stochastic connection matrix T, which
describes only the state-to-state transitions uncondi-
tioned by spin values, is a Markov chain over the causal
states. Second, and more directly, the full e-machine,
including spin labelings, is a subset of models called var-
iously functions of Markov chains [84] or stochastic de-
terministic finite automata [2,27], since the output (spin)
alphabet A differs from the internal (causal) state alpha-
bet S. To be more specific, an e-machine is a function
of a Markov chain that has a unique start state and one
recurrent component. These, in turn, are a subclass of
hidden Markov models [85].

It is important to emphasize that only in some cases
do e-machines reduce to functions of a Markov chain or,
similarly, to probabilistic analogs [86] of discrete-state
automata. e-machines are best considered on their own
terms—a different model class that captures different
types of structure.

D. What Do ¢-Machines Represent?

Given that e-machines can be related to this range
of statistical and computational model classes, it is im-
portant to note that an essential distinguishing feature
of computational mechanics is its hierarchical inductive
framework. It begins by trying to model the original pro-
cess using the least powerful model class. Probabilistic
finite-memory machines are employed first. However, us-
ing a finite-memory representation may not yield a finite-
size model: the number of causal states could turn out
to be countably infinite, as noted above, or to lie in a
fractal set or in a continuum [2,27]. If this is the case,
a more powerful model than a finite-state machine must
be used. One proceeds by trying to use the next most
powerful model classes in a hierarchy of machines known
as the causal hierarchy [2]. The latter is an analog of
the Chomsky discrete-computation hierarchy of formal
language theory [75,76].

It was suggested in the introduction that, in a statis-
tical mechanics context, using the most compact mathe-
matical entity that provides a complete description of a
system is an important way to distinguish between sys-
tems that are structured in different ways. The determi-
nation of an e-machine may be thought of as a formaliza-
tion of this process of detection and classification of struc-
ture. An e-machine, the set of causal states and their
transitions, provides a direct description of the structure
present in the joint probabilities over the system’s inter-
nal degrees of freedom. In particular, the e-machine’s or-
ganization shows how this joint distribution factors into
conditionally independent components. Thus, determin-
ing the class of e-machine that provides a finite descrip-
tion of the original configuration allows one to distinguish
between systems that are organized in fundamentally dif-
ferent ways.



Furthermore, an e-machine gives a minimal description
of the pattern or regularities in a system in the sense
that the pattern is the algebraic structure determined by
the causal states and their transitions. If, for example,
the e-machine has an algebraic structure that is a group,
then it captures a symmetry: for example, translational
or spin-flip. That is, it captures the “pattern” exhibited
in the system’s configurations. Generally, though, the
algebraic structure is a semigroup—and a stochastic one
at that—and so not obviously interpreted in terms of
symmetries. The appropriate mathematical descriptions
are given in terms of measure semi-groups [87]. Despite
a lack of familiar interpretations, the algebraic structure
still captures the intrinsic “pattern” [88]. Examples will
be given below as concrete illustrations of this algebraic
view of pattern.

In summary, an e-machine is a model of a system’s
allowed-configuration ensemble. From this model, we can
proceed to define and calculate macroscopic, global prop-
erties that reflect the characteristic average information
processing capabilities of the system. We now turn to dis-
cuss just what features are calculable from an e-machine.

E. Global Spatial Properties from e-Machines
1. Statistical complexity

An e-machine is a model capable of statistically repro-
ducing a process’s configurations. How much memory is
needed on average to operate this machine? Similarly,
how little internal memory could the generating process
itself have used? Motivated by these questions we now
define a new quantity.

To predict successive spins as one scans a configuration
from left to right, one must track in which causal state the
process is, since knowledge of the causal state gives the
required conditional distribution for optimal prediction.
Thus, the informational size of the distribution Pr(S,)
over causal states, as measured by the Shannon entropy,
gives the minimum average amount of memory needed
to optimally predict the right-half configurations. This
quantity is the statistical complexity [11]:

Cu

k—1
H[S] = - Pr(S.)log, Pr(Ss),  (69)
a=0

where, again, Pr(S,) is given by Eq. (63). Like the ex-
cess entropy E, the statistical complexity C), is a mea-
sure of memory and has units of bits. Note, however,
that the two measures of memory have different inter-
pretations. The excess entropy measures the apparent
memory stored in the configurations, since it is deter-
mined directly from the spin configuration distribution;
that is, from the spin observables. In contrast, C, mea-
sures the minimal amount of (hidden) memory needed to
statistically reproduce the configuration ensemble. As we
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shall see below, these two measures of memory, though
related, typically are not equal.

Another, coarser measure of the e-machine’s size is sim-
ply the number of recurrent causal states. This motivates
the definition of the topological complezity Cy as the log-
arithm of the number of causal states [2];

Co = log, |SH)] . (70)
The topological complexity gives a simple “counting” up-
per bound on the statistical complexity: C,, < Cp. This
follows from a basic maximization property of Shannon
entropy applied to a uniform distribution over the causal
states.

2. Block distributions and entropies

We claimed above that an e-machine is a model of a
configuration in the sense that it reproduces the spin-
block distributions Pr(s’). We now show explicitly how
these distributions follow from the recurrent portion of
an e-machine. In subsequent sections we will then be able
to easily calculate the various information theoretic and
statistical mechanical quantities defined above.

First, note that the sequence of causal states is Marko-
vian. The probability of a transition from recurrent state
S, to recurrent state Sp is given by T,g. Hence,

Pr(Sqa,Sp) = Pr(Sa)Tag - (71)
The
probability that the particular sequence S,,, -, Sa,_;
occurs is given by:
L—2
Pr(Saoa o ’SaL—l) = PI'(SaO) H TOtiOti+1 . (72)
i=0

However, we are interested in the distribution of spin
blocks, as well as sequences of causal states. Recall
that Tésﬁ) Pr(Sg, s|Sy) is the probability of mak-
ing a transition from state a to state 8 while produc-
ing the spin s. Each (a,()-entry in the word matrix
Ts" = TsTs ... Tsc-1 gives the probability of seeing
word s¥ = sgs1...511 starting in state a and ending in
state 8. Using this matrix we can easily write down an
expression for the probabilities over spin blocks:

k—1

Pr(s*) = ) Pr(Sa)

a,3=0

L
B - (73)
Here we sum over the probabilities of all sequences of
L + 1 causal states, selecting only those for which the
particular spin sequence sg,---,SL_1 occurs.

Given the joint distribution over spins blocks, Eq.
(73), the block entropies H(L) follow immediately from
Eq. (33).



8. Two-spin mutual information and correlation function

Recall that using the translation invariance of the
spin configurations, the two-spin mutual information of
Sec. IITG was given by:

I(r) = 2H[So] — H[So, S;] - (74)
The second entropy term on the right-hand side requires
calculating the joint distribution Pr(sg,s,) and the first
requires Pr(sg). In the previous section we derived an
expression for Pr(so), Eq. (73). Thus, to calculate I(r)
we need to develop an expression for Pr(sg, s;)-

Pr(sg, s,) is easy to obtain by summing over all inter-
vening spins in Eq. (73):

PI‘(SO, 57) = Z Pr(303817"'787"—1787‘) (75)
81,5y 8r—1
k—1
_ Z Pr(Sa) Z TO(;;O...ST) (76)
a,B=0 51,m0y8n—1
k—1
= Y Pr(Sa)TNTTS (77)
a,=0

since TL;' = >0, ., Tésﬁl"'sr‘l) and where T de-

notes the " power of the connection matrix T. The last
equality follows since the summation over the a’s has the
effect of multiplying together the T' matrices.

The Shannon entropy of Pr(sg, s,-) is H[So, S,] and the
entropy of Pr(sg) is H[So] and so I(r), Eq. (40), follows
immediately.

Using these same distributions it is now possible to cal-
culate I'(r), the two-spin correlation function of Eq. (13),
since

L(r) = Z s08-Pr(so, s5) — (Z soPr(30)> . (78)

80,8r

The structure factors and susceptibility follow directly
from T'(r). Thus, all of these quantities can be readily
calculated once an e-machine is in hand.

4. e-Machine entropy rate

Recall from Eq. (36) that the entropy density h, can
be expressed as the entropy of one spin conditioned on
all those spins preceding it. Using this, it is not hard to
show that the entropy density can be expressed as the
next-spin uncertainty averaged over the causal states:

k—1
hy =— Z Pr(S,) Z Pr(s|Sa) log, Pr(s|Sy) ,  (79)
a=0

sEA

where Pr(S,) is given by Eq. (63) and Pr(s|S,) is given
by Eq. (61).
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This result is similar to, but not the same as, that
originally given in App. 4 of Ref. [3] for Markov chains.
We derive it here in App. C. Our result is not surpris-
ing given the definition of causal states, which groups to-
gether left-half configurations that led to the same condi-
tional distribution over possible right-half configurations.
As a result, to calculate the entropy density h, one only
need consider the entropy of a single spin conditioned on
the current causal state.

The entropy rate is invariant under a change in the
direction in which the configuration is scanned [28]. This
fact is quite general and holds for any one-dimensional
stationary process, a class of systems much broader than
the spin systems considered here.

The minimality of e-machines has an important con-
sequence for estimating, or even analytically calculating,
the entropy rate h, of a process. Merge any causal states
in an e-machine, in a manner leaving a well-defined ma-
chine that still generates the same set of configurations,
and the entropy rate h, of the modified machine is in-

creased: ilu > hy. In other words, any representation
smaller than the correct e-machine will result in a ma-
chine that has an entropy rate higher than the original
source. Thus, it follows that such a machine cannot pos-
sibly perform optimal prediction in the sense explained
in Sec. IVA.

5. e-Machine excess entropy

The excess entropy E can also be calculated from the
probabilities of the causal states and their transitions. In
the most general setting there is no compact formula for
E in terms of Pr(S) and Pr(s|S), as there was for hy,.
However, we shall see below in Sec. VA5 that for the
special case of finite-range spin systems considered here,
it is possible to write down a relatively simple formula
for E in terms of an e-machine.

6. Relationships between measures of memory

As remarked above, the excess entropy and the sta-
tistical complexity are different measures of a system’s
memory. However, it turns out that the excess entropy
sets a lower bound on the statistical complexity:

E<C,. (80)
This result holds for any translationally invariant infi-
nite configuration [29]. Thus, the memory needed to
perform optimal prediction of the right-half configura-
tions can exceed the mutual information between the left
and right halves themselves. This relationship reflects
the fact that, in the general setting, a process’s inter-
nal state sequences are not in one-to-one correspondence
with L-block or even oco-length configurations.



7. The ezamples analyzed quantitatively

In Table 1 we show the results of calculating (by direct
inspection) the entropy density h,,, the excess entropy E,
and the statistical complexity C, for the example pro-
cesses of section IV A.

Process h, E C,
Fair Coin 1 0 O
Period 1 0 0 O
Period 2 0 1 1
Noisy Period 2 1/2 1 1

TABLE 1: The entropy density h,, the excess entropy
E, and the statistical complexity C}, for the four example
processes of section TV A.

8. Scan-direction invariance

Interestingly, one can show that for some classes of
systems (not including the finite-range spin systems ex-
amined here) C\, and Cp are not scan-direction invariant
[28]. That is, the causal states, and as a result C,, and
Co, may be different depending the direction in which
the configuration is scanned: left to right or right to left.
However, the values of the entropy rate h,, the excess
entropy E, and the two-spin mutual information I(r) are
independent of the direction in which the configuration
is observed. This scan-direction invariance derives from
these quantities’ definitions and is not a result which is
particular to the spin systems considered here.

9. Related, or not, “complexity” measures

As noted above, an e-machine is a model of the original
process that uses the least powerful computational class
admitting a finite model [2]. In contrast, Kolmogorov-
Chaitin (KC) complexity characterizes symbol sequences
by considering their representation in terms of the most
powerful of the discrete computational model classes, the
universal Turing machines (UTMs).

Note that C, > 0 and E > 0 do not imply that memory
resources are expended trying to account for the random-
ness or thermal fluctuations present in a system. Thus,
these measures of structural complexity depart markedly
from the KC (deterministic UTM) complexity. As noted
above, the ensemble-averaged per-site KC complexity is
hy [4,22]. And so, the KC complexity is dominated by
random components in a process. It does not strongly
reflect the algebraic symmetries or structural properties,
unless the entropy rate is zero.

One unfortunate shortcoming of KC complexity, and
its framework, is that it is in general uncomputable [4,22].
That is, unlike statistical complexity and excess entropy,
there exists no general algorithm for its calculation. It
should be noted, however, that in special cases such as
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finite-state Markov chains [4] or continuous-state dynam-
ical systems with an absolutely continuous invariant mea-
sure [89], the average value of the growth rate of the
Kolmogorov-Chaitin complexity can be calculated and
is equal to the Shannon entropy rate h, of the process.
A quantity more closely related to statistical complex-
ity and excess entropy is the logical depth of Bennett [16].
Whereas the Kolmogorov-Chaitin complexity of a symbol
string is defined in terms of deterministic-UTM program
length, the logical depth is defined as the time needed
for the UTM, running the minimal program, to produce

the string. On the one hand, if a configuration, like ?a,
is random, the shortest UTM program that reproduces
it is the program “Print( g° )’. This is a relatively
long program but takes very little time to run: a time
proportional to the length of %% On the other hand,

if a configuration has a simple pattern, like ?ﬂ’s string
of all b’s, then the program to reproduce it also takes a
short time to run: a time proportional to the number of
b’s to print. The minimal program is also short: all the
UTM needs to do is loop over the command “Print b”,
counting up to the desired string length. But if a spin
configuration has a great deal of intricacy—for example,
if the spins code for the binary expansion of 7—then the
minimal program to reproduce it will involve many op-
erations, many more than the number of desired spins.

As a result, like excess entropy and statistical com-
plexity, the logical depth captures a property—being low
for both simple and random configurations—that is dis-
tinct from randomness and from those properties cap-
tured by the entropy rate and Kolmogorov-Chaitin com-
plexity. While there are superficial similarities, however,
C} and E are measures of memory while logical depth is
a measure of run time. A shortcoming of logical depth
shared with KC complexity is that it is in general uncom-
putable [4,22]. That is, there exists no general algorithm
for its calculation.

For other approaches to statistical complexity and cor-
relational structure see Refs. [9,20,21,74,90,91] and cita-
tions therein.

10. e-Machine thermodynamics

As a final note, we mention that e-machines also pro-
vide a direct way to calculate the thermodynamic poten-
tials for a process. These are also known as the fluctu-
ation spectrum, the Renyi entropy, the spectrum of sin-
gularities, S(U) curves, and f(a) curves [8,92,93]. The
fluctuation spectrum provides a measure of how likely
a system is to deviate from its average behavior and is
closely related to more modern methods, as found in the
theory of large deviations [94,95], to describe a process’s
behavior outside of the range of validity of the law of
large numbers.

In Ref. [92] it was shown that calculating the fluctu-
ation spectrum by first determining the e-machine and



then proceeding to calculate the spectrum from the ma-
chine yields significantly more accurate results than es-
timating the spectrum directly from configurations by
using histograms to estimate spin-block probabilities. Fi-
nally, one can analyze the fluctuation spectra of causal
state sequences themselves by replacing the Shannon en-
tropy in the definition of statistical complexity with the
Renyi entropy.

F. Summary and a Look Ahead

In the previous sections we reviewed the tools used by
statistical mechanics, information theory, and computa-
tional mechanics to measure correlation and structure.
The main quantities from statistical mechanics are cor-
relation functions I'(r), the correlation length &, and the
structure factors S(g). Information theory provides a
measure, h,, of the randomness or unpredictability of a
system and also provides measures of the apparent spa-
tial memory of a configuration, the excess entropy E and
the coarser two-spin mutual information I(r).

However, information theory tells us little about how
a system utilizes its memory nor whether the apparent
memory (E) is equal to the minimum amount of mem-
ory (C,) actually required internally to produce config-
urations. To help address this concern, computational
mechanics was put forth as a way to discover and quan-
tify the intrinsic computational capability of a system.
By constructing a model (an e-machine) that statisti-
cally reproduces the system’s configurations, we obtain
an explicit description of the architecture of the minimal
information processing apparatus needed to produce the
configuration ensemble. One consequence is that the sta-
tistical mechanical and information theoretic quantities
can be calculated directly.

Let’s now return to the theme of this paper: discover-
ing structure and quantifying patterns in spin systems.
Do e-machines capture our intuitive notion of pattern?
If so, in what sense? And how is the architectural analy-
sis of information processing provided by computational
mechanics related to the notion of a pattern? It is not ob-
vious a priori that examining the intrinsic computation
of a system is a sensible approach to describing patterns.
However, we will demonstrate below that e-machines pro-
vide a more explicit representation of all the patterns,
symmetries, and regularities in a spin configuration than
is provided by either information theory or statistical me-
chanics. To do so, we shall calculate statistical mechan-
ical, information theoretic, and computational mechani-
cal quantities for some short-range one-dimensional Ising
systems. In the next section we report our calculational
techniques more thoroughly than in Ref. [25]. We dis-
cuss our results for models with nearest and next-nearest
neighbor interactions and then proceed to a direct com-
parison of the three different approaches to discovering
and quantifying patterns.
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V. COMPUTATIONAL MECHANICS OF
ONE-DIMENSIONAL SPIN SYSTEMS

A. Calculational Methods

As is well known, the partition function for any one-
dimensional spin system with finite-range interactions
can be expressed in terms of the transfer matrix V' [96].
Namely, Z = Tr VV, where V¥ is the N** power of V
and N is proportional to the system size. The trans-
fer matrix may be viewed as a function of the values of
blocks of consecutive spins, with the required block size
depending on the interaction range. The dimensionality
of the transfer matrix is chosen to be large enough so that
the sum over all spin configurations, as in Eq. (7), can be
reexpressed as a product of transfer matrices. Hence, the
transfer matrix approach effectively decomposes a config-
uration into a concatenation of contiguous spin blocks.

For the simple case of a spin-1/2 nearest neighbor (nn)
Ising system a spin block length of 1 suffices and so V' is
a 2 x 2 matrix defined by

1
V(si,siy1) = exp[J18sisiy1 + 535(31' +sip1)] - (81)

Here, the row and column indices correspond respectively
to the values of a single spin and its nearest neighbor to
the right.

For R-range interactions the spins must be grouped
into blocks of R consecutive spins. For a spin-K system,
the row and column indices then run over the (2K +1)%
possible values the spins can assume in a block of R sites.
We shall denote the individual (2K + 1)F possible values
of an R-spin block by 7. Only for the special case of
a nearest neighbor (R = 1) interaction does n = s, a
single spin. Subscripts on the spin blocks will indicate
lattice site, not the particular value of the spin block.
The transfer matrix connecting the i*® and (i + 1) spin
blocks is denoted by V(n;,7i41)-

For a given system there are a number of ways to con-
struct a transfer matrix that describes its statistical me-
chanics; see, e.g., Ref. [97]. A general method is elegantly
described by Dobson in Ref. [98]. Below, we shall assume
that V has been constructed to add on the effects of R
spins per matrix operation, where R is again the sys-
tem’s interaction range. By u® (u*) we denote the right
(left) eigenvector corresponding to Vs largest eigenvalue
A, normalized so that the inner product of 4™ and u” is
unity.

1. Determination of recurrent causal states

Our first step is to find the recurrent causal states from
a range-R spin system determined by V. To do this we
will need to form conditional probabilities as in Eq. (53).
In particular, we must find an expression for the probabil-
ity that L consecutive spins take on the particular values



8i,8i41, " *,8i4(L—1)- For convenience, we let L = RL'
where I' > 0 is an integer that indexes the contiguous
R-blocks in the lattice; that is,

i = SRiSRi+1 """ SR(i+1)-1, i =0,1,...,L' =1. (82)
This choice does not affect the results, but simplifies the
following derivations. After constructing a transfer ma-
trix, one can use the Boltzmann distribution of Eq. (1)
to obtain:

R , L L'—2

% H V(nisnig1) - (83)
i=1

PI‘(S(), 81,1, SL_1) =
That is, for a given block of L spins, the probability is
a product of components of the transfer matrix and its
principal eigenvalue and eigenvectors. Each particular
configuration sgs; ---sp—1 specifies unique values of the
contiguous R-spin blocks 79,71, --,7L—1 in the config-
uration. To evaluate the right-hand side of Eq. (83), the
components of the matrices and vectors are chosen by
the n variables that correspond to the particular spin
variables on the left-hand side; that is, according to Eq.
(82).

Consider an infinite configuration split at sq and left-
and right-half configurations of length L on either side:

L
g =S8_LS—L+1-:---85-285-1 (84)
and
L
S = 8081 -..8L_28L_1 - (85)
Now,
oL L
L L P
Pr(s |5 ) = % (86)
Pr(s )

_)L

L
Using Eq. (83), the definitions of 5 and s , and
Egs. (84) and (85) in Eq. (86) we have, after some sim-
plifying,

R L'-2
L L 1_
Pr(s |s )= # H V(mi, i) - (87)
N-1 j=_1

Recall that we view this as a function over all possible
L
length-L right-half configurations s conditioned on a

particular length-L left-half configuration ?L. Analyzing
this equation is the key step in determining the causal
states.

Notice that Eq. (87) indicates that of all the spin blocks

L L L
ins = Lty --sT—1, Pr(g> |<§ ) only depends on the

single spin block n_;. All the other spin blocks 7 in

Eq. (87) are members of s . That is, the probability
distribution over right-half configurations depends only
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on the value of the left-most (closest) neighboring block.
This result holds for any L > R. Hence,

—L

L L
Pr(s |s ) =Pr(s |n_1).

= (88)
Expressed informally, the values of sg,...,sp_1 are
“shielded” from s_r,...,s_r—1 by spin block 7_;

S_R---5-1, ?L’s leftmost R neighboring spins. This ob-
servation was made in a different context by Baker [99].

This somewhat surprising result can be explained phys-
ically as a direct consequence of the range-R interactions
in the Hamiltonian. The probability of a right-half con-

figuration s depends only on its energy. Of all the spins
in ?L, only the spins in the n_; block—i. e., the block
that neighbors 's—contributes to the energy and hence
to the probability of S,

Recall that two left-half configurations are considered
equivalent if and only if they give rise to the same distri-
bution of right-half configurations conditioned on having
seen those particular left halves. The equivalence classes
induced by this relation are identified as the causal states.
Thus, Eq. (87) tells us that for a spin-K system with
range R interactions there are at most (2K + 1) recur-
rent causal states corresponding to the (2K +1)% possible
values of a single spin block: |[S®)| < (2K + 1)%. Re-
call that the recurrent causal states are the equivalence
classes in the limit that K, L — oo in Eq. (53). In deter-
mining the causal states, say by successively increasing
L from 0, Eq. (87) shows us that the set of causal states
will not change once L > R. For any L > R, the con-
ditional distribution of Eq. (87) depends only on 7_1, as
indicated by Eq. (88).

To complete our determination of the recurrent causal
states, we must make sure that each different value of n_;

L
actually gives rise to a different Pr(? |n—1). That is, we
must check for all different spin-block pairs, n—1 # 1’ 4,
that
N L
Pr(s [n-1) #Pr(s |n_y), (89)
L L

for at least one s € AY. Note that s can be de-

composed into a telescoping product over its 7;’s; that
is,

L'—2
L
Pr(s |n-1) = [] Pr(nisaln) -

i=—1

(90)

Looking at the future conditional probability distribu-
tion, Eq. (87), we see that the Eq. (89) may be written
as

V(n—lﬂlo) V(TI'_DTIO)
ekl (1)
-1 "—1

for at least one 79, the next spin-block.



It should be emphasized that we are fixing two particu-
lar values for the rightmost spin block in the left half, n_,
and 7' ;, and comparing the distribution over all possible

values of ?L or its surrogate block 79. When n_1 # 1’ 4,
if Eq. (91) holds for at least one 7, then the conditional
distributions are distinct. This, in turn, means that the
causal states are in a one-to-one relation with the values
of R-spin blocks. If this is not the case, then we’ve found
two distinct blocks, n_1 and 7" ;, that lead to the same

conditional distribution Pr(?L|o). Therefore, (i) 1 and
n'_, are in the same equivalence class and (ii) there are
fewer recurrent causal states than there are spin blocks.
For the Ising systems considered here, condition Eq. (91)
is almost always met; if system parameters are randomly
chosen, Eq. (91) holds with probability 1. The immedi-
ate conclusion is that the set of R-spin blocks {n} is the
set of recurrent causal states. The exceptions, though,
are notable, as we will see later on.

We can simplify the notation of Eq. (91) by dropping
the R-block index when referring to the transfer matrices
and its eigenvectors. We can then express Eq. (91) in
terms of the components of the transfer matrix and the
eigenvectors. That is, we change

V(n-1,m0) = Vij , (92)
where i, = 0,1,...,(2K + 1) — 1 index the rows and
columns of V' and correspond to the values of n_; and
7o, respectively. Using this simpler notation, the condi-
tion for distinct conditional distributions Eq. (91) may
be rewritten as

Vieul* # VirJu} (93)
for at least one k. If this is satisfied, then the recurrent
causal state probabilities are given by:

LRE+1)f -1,

Pr(S™) = uwRuf | i=0,1,. (94)

We have now determined an upper bound on Cy and
C,, for a spin-K system with R'® nearest neighbor inter-
actions: C), < Cy < Rlogy(2K +1). This result indicates
that this class of spin systems is a severely restricted sub-
set of e-machines. For example, the number of causal
states is finite for all parameter values.

2. Causal state transitions

Now that we have found the recurrent causal states,
our task is to determine the probabilities for transitions
between them: To%) = Pr(Sg, s|S,), where the indices
run over only the recurrent causal states.

Recall that transitions between causal states are deter-
ministic in the sense that knowledge of the next spin de-
termines the next causal state; that is, Pr(Ss|s, Sa) = 1,
if the transition is allowed and zero otherwise. Thus, it

suffices to know Pr(s|S,) to determine T(S)
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It follows from Eq. (83) that

’U,R

AV (-1,10) (95)

Pr(no|n-1) =

17 1

where 19 = 5¢81---Sg_1 is the contiguous, non-
overlapping R-spin block to the right of 73
S_RS_R+1---5—1. To obtain Pr(sg|n_1) from Pr(ng|n_1)
we must sum over all the spin variables in 79 except for

so. Hence:

Pr(so|n-1) (96)

=2

For a nearest-neighbor (R

Z V’r}la

SR—1

1) system we have, for ex-

ample,
Pr(t |n-1) =Pr(t) n-1) + Pr(TT I7-1)
R
Lyt + vttt o)
ﬂ 1 77—1

Téz) follows immediately from Eq. (96). The tran-
sient states and their transition probabilities can be de-
termined as in App. B. Taken altogether, then, the recur-
rent and transient states plus their transition probabili-
ties constitute an e-machine for the spin system described
by the transfer matrix V. We shall give examples of spin
system e-machines in the following sections.

8. Spin system statistical complezity

In a previous section we identified the recurrent causal
states as the possible values of the spin blocks 7, assum-
ing Eq. (93) is satisfied. Recalling that the statistical
complexity is the Shannon entropy over the asymptotic
causal state distribution, we may use Eqgs. (69) and (94)
to obtain:

|[SH)—1
Y ultuflogy(ufuf) . (98)
i=0
Eq. (98) is equivalent to setting L = R in Eq. (33),
C,=H(R). (99)

That is, the statistical complexity is the Shannon entropy
H(R) of the R-spin block distribution. As already noted,
H(R), divided by R to give a density, is not the entropy
density hy,, even if R = 1.

4. Spin system entropy density

Since the probability of a spin block depends only on
the value of that block’s nearest neighbor, Eq. (36) for
the entropy density reduces to
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a form for h, discussed in App. C. Using Eq. (83) we
find that

8¢ |1
> ufufVjilogy[Vi)

4,j=0

hy logy A — A1

(101)

Although not apparent, it is straightforward to show
that, for systems described by a finite-dimensional trans-
fer matrix, Eq. (101) is equivalent to the more familiar
expression for entropy density,

log Z) , (102)

using Z = Tr VN. Our method for calculating the en-
tropy density by using Eq. (36) has also been used by
Lindgren [62].

5. Spin system excess entropy

The range-R interactions also lead to a compact ex-
pression for the excess entropy. Recall that E may be
expressed as the mutual information between the left and
right halves of a configuration. Because only the neigh-
boring R-spin block of one half influences the distribution
over the other half, it follows that:

- -
E = I[S; S] = I[ni; niy1] = I[So; Sr] »

where Sp,S1,...,Sk is a spatial sequence of recurrent
causal states, so that Sg denotes the causal state seen
R spins after seeing Sp. To calculate E using Eq. (103),
we need the marginal distribution of S and the joint dis-
tribution of Sg and Sg. The former is just the asymp-
totic distribution over causal states, Pr(S), as given by
Eq. (94). The joint distribution follows by applying the
stochastic connection matrix T;

(103)

Pr(So,Sr) = D, Pr(S0)Tsys:Tsis: - - Tsn_isn
Sla"'asR 1
=Pr(So)TS3. (104)

where TE~1 is the (R—1)*" power of T. From Eqgs. (94),
(103), and (104), E follows readily. We should emphasize,
however, that Eq. (103) is not completely general—it ap-
plies only to R-range one-dimensional spin systems for
which Eq. (93) holds.

In terms of the transfer matrix, an expression for E
follows by inserting Eq. (83) into Eq. (103) and simplify-
ing;
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EISRA S
E=—log, A+ A" > ufufVjilog,[V;]
i,j=0
S)|—1

Z uRu logy[u R ﬁ] (105)

One can also calculate E and h, by determining an
expression for H(L) in terms of V and using Eq. (42).
Doing this, we get formulae that agree with those derived
above.

6. Relationships between spin system memory measures

Note that these results—Eqs. (98), (101), and (105)—
establish an explicit version of the equality in Eq. (80)
between E and C, mentioned above; namely,

C,=E+Rh,, (106)

where R is the range of interaction and again assuming
that Eq. (93) is satisfied. Eq. (106) is a consequence of
the information theoretic identity,

Hn;] = Ins; mig1] + H[nig1|mi] -

This result, Eq. (106), also applies to finite-step Markov
chains in which blocks over the observed alphabet A are
in 1—1 correspondence with the internal-state blocks S%.
Note that the fair coin and the noisy period-2 examples
violate this condition and so Eq. (106) does not hold for
them. (See Table 1.)

Eq. (106) shows us that E, C,,, and h, are not inde-
pendent for the finite-range systems considered here. As
such, we will focus mostly on E and h, for the remain-
der. When discussing e-machines below, we will consider
mainly their detailed structure and will not focus on the
single number C,,.

Finally, since mutual information, and thus E, is a
nonnegative quantity, we note that

Cu>hy,

(107)

(108)

recalling the restrictions on Eq. (106). It might seem
puzzling that the amount of information carried by the
e-machine—“Which causal state is the process in?”—is
larger than the information available (on average) from
individual spin observations. However, C, and h,, simply
measure different types of information.

B. Spin-1/2 Nearest-Neighbor Systems

Starting with the transfer matrix, the preceding sec-
tion developed a general method for determining the
causal states, constructing an e-machine, and calculat-
ing the statistical complexity, entropy density, and ex-
cess entropy. The results describe all finite-range one-
dimensional spin systems. In this section we apply these



results to the simple case of nearest-neighbor (nn) spin-
1/2 systems, J, = J10,1, in Eq. (6). The main goal of this
section is to illustrate the use of our methods and to allow
the reader to gain familiarity with the quantities we’ve
defined in earlier sections. In subsequent sections we shall
consider longer range models, compare and contrast E
and e-machines with the measures of structure found in
statistical mechanics, and, then, draw some general con-
clusions about the behavior of these different quantities.

1. e-Machines for the spin-1/2, nearest-neighbor Ising model

For the special case of a spin-1/2 system with nearest-
neighbor interactions, and for those parameter values
where Eq. (93) holds, the corresponding e-machine is
shown in Fig. (8). The transition probabilities are ob-
tained from Eq. (96) and the transient state construction
technique of App. B. State A is the start state and is
the only transient state. States B and C are recurrent.

LOPr (L)

LOPr (s 1)

1OPr(1 Ot)

FIG. 8. The spin-1/2 Ising e-machine. The double-circled
causal state A is the start state. It is a transient state, never
visited again after the first transition. The two initial transi-
tions give the probabilities of isolated up and down spins.

The transition matrices {T®) : s € A} are given by:

0 Pr(}) O
0 Pr({[{) 0O
0 Pr(J|1) 0

T = (109)

and

TM = (110)

OO O
OO O

Pr(1)
r(t]4)
r(t]1)

The stochastic connection matrix T, being the sum of
the above two matrices, is:

P
P

0 Pr()) Pr()
T= (0 Pe(4[1) Pr(t] ) (111)
0 Pr(L[1) Pr(t]1)
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The components T,g give the probability of making a
transition from causal state a to causal state 3. As be-
fore, we use the convention that the numerical values
of the index a correspond to the alphabetical indices
of the causal states in the natural way; @ = 0 corre-
sponds to causal state A, a = 1 to B, etc. For example,
the probability of making a transition from B to C is
given by TJ, = Typ = Pr(f | |). The matrices given
by Egs. (109) and (110) are equivalent to the e-machine
shown in Fig. (8).

In terms of the system parameters J;, B, and T, the
elements of the stochastic connection matrix can be cal-
culated explicitly via Eq. (96) and the transient state
construction technique of App. B. We find:

0 1+m 1-m
2
T=|0 rleT* 1—kle—7> (112)
01-rkter" e
The normalization factor & is given by:
B - B
K=eT cosh(=) + \/e% +er sinh?(=), (113)
T T
and m, the magnetization, is:
J1
eT sinh(Z)
m= e L : (114)
\/eT + e sinh’(2)

2. Paramagnet

We now apply these results to some particular cases,
beginning with a paramagnet, J; = 0. It is easy to check
that Eq. (93) is not satisfied. Hence, there is only one
causal state and C, = 0 for all temperatures and all
values of the external field B. Physically, this is because
at J1 = 0 there is no coupling at all between the spins; a
spin exerts no influence on the value of its neighbors. As
a result, there is only one conditional distribution:

Pr(3 s 1 =4) = Pr(3 s 1 =1).  (115)

The e-machine for the paramagnet is shown in Fig. (9).

In terms of B and T,

eB/T

and Pr(]) = 1 — Pr(1). The start state is recurrent for
this particularly simple process. If there is no external
field B to bias the spins, then Pr(}) = Pr(1) = 1/2 and
the e-machine of Fig. (9) is identical to the the fair coin
machine of Fig. (3).

Since knowledge of a spin carries no information about
the value of its neighbors, the excess entropy also van-
ishes for the paramagnet. If there is no external field B



to bias the spins, all configurations are equally likely and
h, = 1. As B increases from 0, the configurations are
biased toward 71, and the entropy density monotonically
decreases. Note that for |B| < oo and T' > 0, h, can
take on all possible values except for 0; 0 < h, < 1.
Yet for all B, €, = E = 0. This simple example illus-
trates how excess entropy and statistical complexity are
measuring a property that is clearly distinct from the en-
tropy density—they are different from randomness. We
can also see how the process of determining the causal
states factors out the randomness in the system.

LPr(l) @

FIG. 9. The e-machine for a paramagnet. Pr(1) and Pr(])
depend on B and T. However, C, = E =0, for T > 0.

1 OPr (1)

3. Ferromagnet

For ferromagnetic coupling, J; > 0, Eq. (93) holds for
all temperatures except zero and infinity. In this range
the recurrent causal states may be identified with the val-
ues of a single spin. An e-machine for typical parameter
values is shown in Fig. (10).

FIG. 10. A typical e-machine for a ferromagnet. Ji = 1.0,
B =03, and T = 1.50. C, = 0.72 bits, E = 0.16 bits,
and h, = 0.56 bits per site. Note the high probability of
“self-transitions” from B to B and from C to C, a manifes-
tation of the relatively large ferromagnetic interaction.

At infinite temperature, thermalization dominates and
the spins effectively decouple; all configurations are
equally likely. Thus, as for the paramagnet, there is only
one conditional distribution,
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L L
Pr(s |s_1 =1) =Pr(s |s_1 =1). (117)
As a result, there is only one causal state and C), and
E vanish. The e-machine for the infinite temperature
ferromagnet, shown in Fig. (11), is identical to the fair
coin machine, Fig. (3).

ol (&

FIG. 11. The e-machine for T = co. There is no memory, of
any type: C, = E = 0 bits. The infinite temperature machine
is identical for the ferro-, para-, and antiferromagnets so long
as Jp and B remain finite.

1 1/2

At zero temperature there are no thermal fluctuations
and the spins are locked in their ferromagnetic ground
state: all spins align with the external field. This situa-
tion is exactly the same as the period-1 example consid-
ered in Sec. IVA 2. Thus, as shown in Fig. (12), there
is only one causal state and only one transition. The ex-
cess entropy, statistical complexity, and entropy density
all vanish for this simple, trivially predictable system.

i

FIG. 12. The e-machine for the ferromagnetic ground state,
T=0. C,=E=0bits for 0 < B <coand 0 < Ji.

The statistical complexity and excess entropy for a
nearest-neighbor ferromagnet are plotted as a function
of temperature in Fig. (13). C, increases monotonically
as a function of temperature until 7' = oo (not shown).
There, as mentioned above, the couplings between spins
become negligible, causing the two causal states to merge
into one, yielding C,, = 0. The monotonic increase in be-
tween these two extremes is due to the distribution over
the two causal states, B and C, becoming more uniform
as the temperature is increased. Since C}, is the Shannon
entropy of the causal state distribution, it is maximized
when the distribution is uniform. This distribution is
approached as one nears, but is not at, 7" = oo.
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FIG. 13. Cy, hu, and E as a function of T for the nn
spin-1/2 ferromagnet. B was held at 0.20 and J; = 1.

In Fig. (14) we plot C,, and E parametrically as a func-
tion of the randomness, as measured by h,. This plot is
referred to as the complexity-entropy diagram [11]. The
benefit of this type of plot is that it is free of the exter-
nal control parameters—temperature, coupling strength,
and external field. Thus, the complexity-entropy dia-
gram gives direct access to a system’s information pro-
cessing capabilities and provides a common set of coor-
dinates with which to compare the information process-
ing properties of systems with different architectures and
control parameters. For example, in Ref. [25] we used
the complexity-entropy diagram to compare the configu-
rations generated by one-dimensional Ising systems with
the sequences generated by the symbolic dynamics of the
logistic map.

0.6
Entropy Density h“ [bits/site]

FIG. 14. The complexity-entropy diagram for a ferromag-
net; C, and E plotted parametrically against h,. The
coupling constant and field were fixed—J; 1.0 and
B = 0.05—as T was varied. At h, =1 (T = o0), Cy, = 0 bits;
this is denoted by the square token.

For the ferromagnet, we see in Figs. (13) and (14) that
E has a maximum in a region between total randomness
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(hy = 1) and complete order (h, = 0). At low temper-
atures (and, hence, low h,) most of the spins align with
the magnetic field. At high temperatures, thermal noise
dominates and the configurations are quite random. In
both regimes one half of a configuration contains very
little information about the other half. For low h,, the
spins are fixed and so there is no information to share.
For high h,, there is much information at each site; a
roughly equal number of spins point up and down, so
the single spin uncertainty is quite high. However, this
information is uncorrelated with all other sites. Thus,
the excess entropy is small in these temperature regimes.
In between the extremes, however, E has a single max-
imum at the temperature where spin coupling strength
balances the thermalization. The result is a maximum in
the system’s spatial memory.

4. Antiferromagnet

An e-machine for a typical antiferromagnetic (AFM)
coupling (J; < 0) is shown in Fig. (15). Note that “topo-
logically” the AFM machine is identical to the FM ma-
chine of Fig. (10)—the states and their connectivity are
identical. The difference between the two systems lies
in the probabilities of the transitions. The FM shows a
high probability for self-transitions; Pr(B — B) = 0.67
and Pr(C — C) = 0.88. These self-loops are responsible
for the FM pattern: aligned spins. For the AFM, the
self-loops are relatively weaker; Pr(B — B) = 0.05 and
Pr(C — C) = 0.56, with the high value of the latter
being due partially to the high B(= 1.8). This indicates
a stronger tendency for spins to be anti-aligned, as ex-
pected for a system with AFM couplings.

FIG. 15. A typical e-machine for an antiferromagnet
(AFM). J; = —1.0, B = 1.8, and T = 1.5. Giving C,, = 0.92
bits, E = 0.27 bits, and h, = 0.65 bits per site. Note the
relatively strong interstate coupling.

The high temperature behavior of the excess entropy is
similar for both the AFM and FM. (See Fig. 16.) Ther-
mal fluctuations destroy all correlations and E vanishes.
The low T behavior differs, however, as one might expect



given the different ground states exhibited by models
with ferro- and antiferromagnetic couplings: in the FM
ground state, all the spins are aligned, while the ground
state of the AFM consists of alternating up and down
spins. The latter is, of course, the period-2 configuration
given by Eq. (51) that we considered back in Sec. IV A
with Fig. (6). In Fig. (16) we chose the antiferromag-
netic coupling to be strong enough so that an antiferro-
magnetic ground state persists despite the presence of an
external field. In the antiferromagnetic ground state the
spatial configurations thus store one bit of information
about whether the odd or even sites contain up spins.
Accordingly, as can be seen in Fig. (16), E — log,2 =1
bit as h, — 0.

E. C, [bits]

0.6
Entropy Density h“ [bits/site]

0 0.2

FIG. 16. The complexity-entropy diagram for an antiferro-
magnet. The temperature was varied as J1 and B were held
constant at J; = —1.0 and B = 1.80. As was the case for the
ferromagnet, at h, =1 (T = o0), C,, = 0 bits; this is denoted
by the square token.

5. General remarks

For different couplings and field strengths a range of
E vs. h, relationships can be realized but their form is
similar to those shown in Figs. (14) and (16); E either
shows a single maximum or decreases monotonically. It
is always the case, though, that E is bounded from above
by 1 — hy, which follows immediately if C), is set equal
to its maximum value, 1 bit, in Eq. (106).

We have demonstrated this upper bound explicitly in
Ref. [74], where we show a plot of the excess entropy
versus entropy density for a nn Ising system with ran-
domly chosen system parameters. Li [18] has performed
a similar study using several probabilistic automata.

In Sec. IVE, C,, was presented as a measure of struc-
ture. It is perhaps surprising, then, that it behaves so
differently from E. As h, increases, one might expect C,,
to reach a maximum, as does E, and then decrease as the
increased thermalization merges causal states that were
distinct at lower temperatures. However, Fig. (14) shows
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a monotonic increase in C,, with h, for the FM. To un-
derstand this, recall that the number of recurrent causal
states does not change as T is varied between zero and
infinity. For the nn spin-1/2 Ising model, the number of
causal states remains fixed at two. What does change as
T is varied are the causal state probabilities Pr(S,). For
the FM, as the temperature rises the distribution Pr(S,)
becomes more uniform and so C, grows. This growth
continues until 7" becomes infinite, since only there do
the causal states collapse into one, at which point C),
vanishes.

For the AFM the situation is a little different. At T =0
there are two recurrent causal states corresponding to the
two spatial phases of the alternating up-down pattern.
The probability of these causal states is equal. Hence, we
see a low temperature statistical complexity of C), = 1
bit. At high (but finite) temperatures, the thermal fluc-
tuations dominate; the anti-ferromagnetic order is lost,
but the distribution over causal states is still relatively
uniform, so the statistical complexity remains large. (As
with the FM, at T = oo the two causal states merge and
C,, falls to zero.) Between these extremes there is a re-
gion where the influence of the external field dominates,
biasing the configurations. This is reflected in a bias in
the causal state probabilities and C, dips below 1, as
seen in Fig. (16).

The tendency for C), to remain large for large values
of h, is due to a more general effect, which follows from
Eq. (106): C, = E+ Rhy,. The memory needed to model
a process (or for the process to produce its configura-
tions) depends not only on the observed memory of the
configurations generated, as measured by E, but also on
its randomness, as measured by h,. It is important to
note, however, that C, is driven up by thermalization not
because the model attempts to account for random spins
in a configuration and not because the process must de-
velop substantial memory resources to produce random
spin values. Rather, C,, rises with h, because Pr(S,) be-
comes more uniform as the temperature increases. This
reflects the fact that knowing in which causal state the
process is becomes more informative in this regime.

C. Spin-1/2 next-nearest neighbor Ising system

We now discuss the causal states and e-machines for a
spin system with nearest and next-nearest neighbor (nnn)
interactions. That is, the coupling constants of Eq. (6)
now are given by

JT = J1(51r + JQ(SQT . (118)

This system, capable of richer behavior than the nn sys-
tem discussed above, is an important addition for dis-
cussing the detection of patterns and structure in subse-
quent sections. It will serve as our primary example when
we compare computational mechanical, statistical me-
chanical, and information theoretic approaches to struc-
ture.



For the nnn system the recurrent causal states are,
assuming Eq. (93) is satisfied, in a one-to-one relation
with the four possible values of a block of two spins. A
general e-machine for this system is shown in Fig. (17).
The connection matrix for this system is given by:

T= (119)
0 Pr(l) Pr(t) 0 0 0 0
0 0 0 Pr(t | ) 0 Pr(4 | 1) 0
0 0 0 0 Pr(t | 1) 0 Pr(L | 1)
0 0 0 0 Pr(t | 11) 0 Pr(d | 11)
0 0 0 0 Pr(t | T1) 0 Pr(l | T1)
0 0 o Pr(t | 1) 0 Pr(l | ) 0
0 0 0 Pr(t | 1) 0 Pr(l | ) 0

There are several features to note about the e-machine
of Fig. (17). First, the machine has more states than the
nearest-neighbor system. This is a direct consequence of
the longer-range interactions in the nnn system. Second,
there are four recurrent causal states, D through G, and
thus the topological complexity Eq. (70) is Co = log, 4 =
2 bits. Asnoted in Sec. IV E 1, the topological complexity
sets an upper bound on the statistical complexity C;
hence, C,, < 2 bits. Lastly, setting h, to its minimum
value, 0, in Eq. (106), we also obtain a bound on the
excess entropy; E < 2 bits. We will discuss the behavior
of E for the nnn system in the next section.

1 OPr (1 0Or)
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FIG. 17. e-machine for a next-nearest neighbor spin-1/2

Ising model. There are
three transient states S’ = {A,B, C} and four recurrent
states §(F) = {D,E,F,G}. The start state is A.
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VI. EXCESS ENTROPY IS A
WAVELENGTH-INDEPENDENT MEASURE OF
PERIODIC STRUCTURE

Superficially, it might seem that the excess entropy and
the structure factors reflect the same feature of a config-
uration. The excess entropy measures the total mutual
information between two halves of a configuration and
so may be viewed as the total apparent spatial memory
stored in the configuration. The structure factors S(q),
defined in Eq. (21), are a sum over all two-point correla-
tion functions and thus, in a limited sense, can be viewed
as a measure of the total correlation. However, we shall
see in this section that E and S(q) have several important
differences.

In Fig. (18) we have plotted S(0), S(w/2), S(x), and E
as a function of the coupling strength J; between nearest
neighbors for the nnn Ising system just described. The
field, temperature, and next-nearest neighbor coupling
constant were held fixed at B = 0.05, T = 1.0, and
Jo = —1.2. The structure factors of wavenumbers 0, 7/2,
and 7 correspond to wavelengths of spatial periods 1, 4,
and 2, respectively.

Let’s first analyze the behavior of the structure factors
in Fig. (18). As Ji goes to —oo, the thermal fluctua-
tions become negligible and the system is confined to its
ground state. The nnn coupling constant J» is also neg-
ligible in this limit. Hence, the system’s ground state
is antiferromagnetic with period 2: alternating up and
down spins and, in Fig. (18), S(n) diverges.

For J; > 0 the nn coupling is ferromagnetic. As J;
becomes larger than J3, the system moves through a re-
gion of ferromagnetic structure similar to that reflected
in Fig. (13) and indicated by the S(0) peak in Fig. (18).
As J; — +o0o the thermal fluctuations and the nnn cou-
pling are again negligible and the system is fixed in its
ground state. Here, since J; > 0, the ground state is fer-
romagnetic. All spins line up with the external field. As
a result, {sos,) = (s)? so all the I'(r)’s vanish, yielding a
vanishing S(0).

For |J1| < T, the thermal fluctuations and the nnn
coupling J» dominate and the lattice effectively decou-
ples into two non-interacting chains. That is, the even
and odd sites do not interact with each other. Since
J2 < 0, the ground state in this parameter regime is an-
tiferromagnetic with period 4:

S NS S S

As aresult, we see a peak in S(7/2) at J; = 0in Fig. (18).
The wavenumber 7/2 corresponds to a period of 4. The
structure factors S(0) and S(7) are insensitive to struc-
ture at this wavelength.

(120)
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FIG. 18. The structure factors S(0), S(w/2), and S(r) and
the excess entropy E versus nearest-neighbor coupling J; for
a next-to-nearest neighbor 1D Ising system. The parameters
are B=0.05, T = 1.0, and J» = —1.2.
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Fig. (18) shows that the system exhibits significant
structural changes, as indicated by the structure factors,
as the parameter .J; is varied. Notice, however, that ana-
lyzing the configurations using only one of the structure
factors misses most of the changes that occur in the con-
figurations elsewhere. Excess entropy, however, is not
limited to a particular wavelength. As can be seen in
Fig. (18), E picks up the ferromagnetic and both types
of antiferromagnetic structure. This feature of the excess
entropy is especially noteworthy, as statistical mechanics
does not possess a structure factor that is applicable to
all such situations.

The excess entropy is capable of detecting structure
at any wavelength because it is a much more “global”
function than the structure factors. Although calcula-
tion of the structure factor involves summing over all the
variables in the chain, the correlations are considered in
pairs, since the two-point correlation functions I'(r) are
summed over. Excess entropy, on the other hand, is de-
fined as the information that the entire left half carries
about the entire right half. The excess entropy treats the
left half and the right half of a configuration as two (very
large) composite variables; it does not break them into
pairs. In this sense we say that E is more global than
S(q). Conversely, S(q) is somewhat “myopic”’. By con-
sidering only two-point correlations modulated at some
wavenumber ¢, S(q) misses structure that occurs at other
wavenumbers and that is due to more-than-two-spin cor-
relations.

The differences between E and S(g) can be better un-
derstood by considering the motivations behind their def-
inition. Structure factors are designed to detect a pattern
of a given periodicity. For example, if one performs a nu-
merical experiment to determine the critical point of a
paramagnet-antiferromagnet transition, then the antifer-
romagnetic structure factor S(m) is the natural quantity
to use to detect the onset of antiferromagnetic order-
ing. If, however, one is interested in the apparent spatial
memory of a configuration, E is the natural quantity to
use.

Simply put, excess entropy and structure factors mea-
sure different things: E measures spatial memory and
S(q) detects correlations of a particular periodicity. They
behave similarly because the spatial memory of a config-
uration is relatively large if it has a periodic pattern. In
fact, E = log, P for a periodic configuration of period
‘P. For the spin systems considered here, a configuration
is periodic if and only if its entropy density h, vanishes.
Thus, if a system has h,, = 0, this implies that is periodic
with P = 2E.

Since E and S(q) measure different properties of a con-
figuration, they carry different units. The excess entropy
is measured in bits while S(g) has the dimensions of spin-
value squared. Note that E is a function of the distri-
bution of the spin variables and, unlike S(g), does not
depend on the values or units of the spin variables. For
example, if we were to consider a model where s; € {+2}
instead of s; € {£1}, S(g) would increase by a factor



of 4 while E would remain unchanged. This is a fairly
trivial observation but, as has been mentioned elsewhere
[61], it emphasizes how mutual information is a more
flexible measure of correlation than a correlation func-
tion. In other words, “correlation” is best interpreted to
be a statement concerning the joint distribution of two
variables, not the values those variables can assume.

The fact that E and S(g) carry different units means
that their numerical values are interpreted differently.
This is particularly clear in the J; — —oo behavior of
Fig. (18). Here, S(m) diverges, indicating exact period-
icity at ¢ = m. The excess entropy, however, is finite:
E = log,2 = 1 bit, indicating that the configurations
store 1 bit of information.

Looking at Fig. (18), it appears as if the sum of S(0),
S(m/2), and S(m) might behave like E. Indeed, summing
these three functions does produce a function that be-
haves like E for this particular system. But summing
up the relevant S(g)’s still depends on guessing the right
¢’s. A response to this objection might be to sum S(q)
over all ¢’s. However, if one does this the different phases
destructively interfere. As a result:

N-1
D Snlg) =
q=0

All we're left with is T'(0), a “self-correlation” term that is
a function of the distribution of a single spin and, hence,
clearly is no measure of spatial structure.

Summing over the absolute value of the structure fac-
tors, as in
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also yields a quantity that fails to measure the total cor-
relation of the system. For example, S fails to vanish for
a paramagnet in the presence of an external field.

One also might be tempted to add together all the con-
nected correlation functions. That is, combine the two-
spin, three-spin, four-spin, etc., connected correlation
functions. (For a discussion of how to extend the defini-
tion of connected correlation functions to more than two
spins see, e.g., [46].) However, such a sum either diverges
or is simply proportional to the free energy. Neither case
leads to a measure of structure. More specifically, one can
show that the connected correlation functions are, up to
factors of 3, the coefficients in the Taylor expansion of
log Z = BF in powers of local coupling constants J; at-
tached to each site ¢, where F' = U —T'S is the Helmholtz
free energy [46]. Thus, a sum of the connected correlation
functions corresponds to setting J; = 1 in this expansion.
Since this is outside of the series’ radius of convergence,
we conclude that this sum will fail to converge unless
the series terminates. If the series terminates, however,
the resulting sum is a quantity proportional to the free
energy F.
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In summary, Fig. (18) illustrates one of our main
points: excess entropy measures the memory stored in
spatial configurations and as such is sensitive to periodic
structure at any period. As far as one can tell, statisti-
cal mechanics does not possess a quantity that has these
properties. The structure factors are sensitive to peri-
odic behavior, but only at particular wavenumbers. Fur-
thermore, the structure factors do not measure memory,
carrying units of [spins?], whereas E carries units of bits,
which often can be usefully interpreted in terms of the
pattern or structure in a configuration.

Since any periodic 1D spin configuration has h, = 0,
a vanishing entropy rate together with a positive excess
entropy is an unambiguous indication of periodic order.
The two information processing “coordinates”, h, and
E, provide a means for detecting periodicity. But peri-
odicity is just one type of structure. How can we discover
and describe structure that isn’t periodic, i. e., structure
that has a positive entropy density? Moreover, differ-
ent structures can have the same period. For example,
s AL - and - AN - -+ both have E = 2
bits corresponding to a period of 4.

More generally, “pattern” is not synonymous with
memory as measured by E. Knowing the amount of
memory stored in spatial configurations does not spec-
ify how the memory is organized or used. Put another
(obvious) way, knowledge of E alone does not allow one to
reproduce the original configuration ensemble. We shall
consider these issues at length now.

Lastly, note that, like E, C}, serves as a measure of low-
entropy memory since since by Eq. (106) h, = 0 implies
C,=E.

VII. «MACHINES REVEAL STRUCTURAL
FEATURES IN ENTROPIC PROCESSES

In the previous section we saw that E serves to detect
periodic—i. e., h, = O—structure. In this section we
examine systems that have relatively large entropy den-
sity, yet still produce highly structured configurations.
To describe these systems, E becomes inadequate and
the full apparatus of computational mechanics becomes
necessary.

A. Discovering and Describing Entropic Patterns

To illustrate this, we consider a spin-1/2 Ising model
with next-nearest neighbor interactions, as analyzed in
Sec. VC. We fix the coupling constants and the temper-
ature at the following values: J; = —3.0 and J» = —1.0
at T = 0.2. The temperature is small compared to
the external parameters. Hence the system is close to
its ground state and thermal excitations are small. As
B increases, the ground state for the system changes.
This can be seen by considering the excess entropy and



the entropy density, which are plotted along with C), in
Fig. (19).

The previous section noted that a 1D spin system with
h, = 0 is periodic with period P = 2E. For B < 1/2, we
see in Fig. (19) that h, vanishes while E ~ 1 indicating
a periodic structure of period 2. Similarly, for B > 8.5
E and h, vanish, indicating periodicity of period 1. For
4 < B <6, E= 159 and h, = 0, indicating that the
system is in a configuration with period 3, since log, 3 ~
1.59. Thus, as B is varied, the system makes transitions
between three different spatially periodic ground states.

The transitions between different periodic regimes can
also be seen in Fig. (20) which shows plots of various
structure factors as a function of the external field B.
The period-2 structure factor S(w) diverges as B falls
below 2. (Strictly speaking, the structure factor does
not diverge. Since the temperature is nonzero, the struc-
ture factor remains finite. “Diverging” structure factors
here have values around 10°.) Above B = 8, all structure
factors vanish, an indication that the system is in a ferro-
magnetic ground state. For B between 2 and 8, we see in
Fig. (20) that the period-3 structure factor S(27/3) di-
verges. Note that our being able to detect these changes
in the periodic structure of the system is due to judicious
choices of ¢ for the S(q)’s shown. This example again il-
lustrates the utility of E as a wavelength-independent
detector of periodicity.

We now turn our attention to the main question of
this section: What is happening during the transitions
between these periodic regimes? For B = 2 and 8 we see
in Fig. (19) that the entropy density h,, is large. Thus,
the system is not spatially periodic in these regimes and
cannot be well-described by structure factors. Presum-
ably the configurations are some mixture of the periodic
ground states that dominate on either side of each tran-
sition. But is this the case? And if they are mixtures,
how do two periodicities “mix”?

E, Cu [bits], hu [bits/site]

4

5 6 7
External Field B

FIG. 19. The statistical complexity C,, excess entropy
E, and entropy density h, versus external field B for a
next-to-nearest neighbor 1D Ising system. The parameters
are J; = —3.0, Jo = —1.0, and T = 0.2.
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The structure factors do not provide much, if any, clue.
Near B = 8 in Fig. (20) we see gentle peaks in S(w),
S(m/2), and S(27/5), the structure factors for patterns
of periods 2, 4, and 5, respectively. And near B = 2,
we see peaks in the S(g)’s for periods 1, 2, and 4. What
sort of configuration could produce these structure factor
amplitudes? To help us answer this question, we examine
the e-machines for the configurations at the transition
points.

3
L SO -
25 o
s@m3)
(\I’; 2 S(12)
2 sns) ——
2 15
G5
a 1t
05 e
Oboooopooo oS
0 1 2 3 4 5 6 7 8 9
External Field B
FIG. 20. The structure factors S(0), S(w), S(27/3),
S(w/2), and S(27/5) versus external field B for a

next-to-nearest neighbor 1D Ising system with Ji
Jo =—1.0,and T = 0.2.

-3.0,

Fig. (21) shows the e-machine for B = 8.0. Transi-
tions that occur with a probability of less than 10~ are
not shown. Note that this e-machine has only 3 recur-
rent states, as opposed to the 4 recurrent causal states
of the generic nnn e-machine of Fig. (17). State F has
disappeared—it is reached with a probability of less than
10~7 and so is not included in Fig. (21).

As expected, the e-machine of Fig. (21) demonstrates
that the transitional structure is indeed a “mixture” of
periodic behaviors of periods 1 and 3. States A, B, and
C are transient states. The self-loop on state E gives
the period-1 pattern 111. The E - G — D — E loop
is the period-3 pattern |11. The entropy density for the
configurations described by the e-machine of Fig. (21) is
relatively high: h, =~ 0.551 bits per spin. Nevertheless,
the configurations have considerable structure—simply
calling them random or “mostly random” is unnecessarily
crude.

Note that Fig. (21) is not the only way for a period-1
and a period-3 pattern to mix. For example, extra 1’s
could be inserted at both state E and state D. That is,
there could be an additional self-loop on state D that
occurs with a different probability than the self-loop on
state E. Thus, the e-machine provides more information
than just showing that the configurations are a mixture
of period-1 and period-3 patterns; the machine tells us
how the patterns combine.

Unlike the collection of statistics plotted in Figs. (19)



and (20), the e-machine provides a complete description
of the configuration ensemble: The e-machine is capable
of statistically reproducing the entire original configura-
tion, along with any other realizations consistent with
the ensemble.

veoot

FIG. 21. The e-machine for the spin system shown in
Figs. (19) and (20) with the external field fixed at B = 8.0.
The other parameters are J; = —3.0, Jo = —1.0, and T' = 0.2.

Recall that, as explained above, the e-machine is a
minimal description. First, the procedure of equivalence
classing to determine the causal states ensures that the
model has the fewest number of states while still account-
ing for all the causal structure of the system. Second, the
model is chosen within the least powerful class that ad-
mits a finite description of the original process. Thus,
in analogy with the group theoretic description of exact
symmetries, the e-machine may be viewed as the “irre-
ducible representation” of the approximate symmetries.
In this sense we conclude that the e-machine is the pat-
tern. Note that to discover the pattern’s structure by
building the e-machine, no assumptions are made, aside
from the translational invariance of the original configu-
ration. That is, determining an e-machine for a system
is not a transform for detecting an a priori given set of
patterns, as is the case with Fourier analysis and the
structure factors, for example. Rather, e-machines en-
able one to discover patterns and structures not assumed
beforehand.
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B. Detecting Entropic Patterns

The e-machine directly reveals important and useful
structural information about a configuration. As men-
tioned above, the machine of Fig. (21) reveals how the
period-1 and period-3 patterns mix to produce the con-
figurations responsible for the complexities and structure
factors observed at B = 8.0 in Figs. (19) and (20). Fur-
thermore, the e-machine structure often can be easily
translated to provide a compact description of the config-
uration in natural language, as already attempted in the
preceding paragraphs. In the case just analyzed, config-
urations may be viewed as a background pattern of [11’s
with one or more extra ?1’s inserted before each |. Typical
configurations at B = 8 are:

L0 N N S S M NS R

and

LI A A B R A

The probability that there are M extra 1’s inserted is

(123)

(124)

readily gleaned from the e-machine in Fig. (21). The
probability is given by:
L. (032 M=0
Pr(M extrat's) = { 068 M>1 (" (125)

Equivalently, the e-machine tells us how we can con-
struct a different machine that produces similar configu-
rations: a machine with a single state that generates the
sequence |11 with probability 0.32 and 1 with probabil-
ity 0.68. Note that this is not an e-machine since each
transition made by the machine does not produce one
symbol.

This alternative description lets us construct yet an-
other machine, a transducer, that detects which sites are
participating in the constituent subpatterns a =1* or
8 = (I1t1)*, where w* denotes an arbitrary number of
replications of w. This filtering machine, illustrated in
Fig. (22), defines a function from configurations of spins
to sequences over the alphabet {a,3}. Transitions are
selected deterministically according to which spin state
is read in from the configuration. (See Refs. [31] and [100]
for more discussion of building and using these types of
transducers.)

Before any symbols are read in, the transducer begins
in the start state, labeled A in Fig. (22). If the first sym-
bol read in is 1 the transducer produces the null symbol
A and returns to state A. If the symbol is |, then trans-
ducer is synchronized to the configuration: it “knows”
what causal state the process is in and it outputs the
symbol 3, indicating that the observed | is part of the
J11 pattern. The next two symbols read in will be 11 and
the transducer makes transitions from G to D and D to
E. In this manner, the transducer maps the input string
of 1’s and }’s to a string of a’s and #’s. For example, the
configuration of Eq. (123) is mapped to:



ANBBBBBLaaafBBacaaaBBBabBBacf . (126)

FIG. 22. A transducer that detects the elemental spin sub-
patterns 1111 ... and [t ... and labels the lattice
sites with the name—a or S, respectively—of the subpattern
in which each site participates.

There are several features of the transducer that give
it utility. First, the transducer can be viewed as giving
“meaning” to individual spins [28]. Determining if a spin
is part of the period-1 or period-3 pattern tells us what
role that particular site is playing in the configuration.
This is not a trivial observation since an isolated 1 is a
part of both of the two competing subpatterns.

Second, the transducer provides a way to recognize se-
quences; that is, to determine if a candidate sequence is
statistically identical to the configuration from which the
e-machine was originally constructed. This recognition
process consists of two components; first we determine if
the candidate configuration is allowed and then we check
to see that the spin blocks within the candidate configu-
ration occur with the correct probabilities.

If, as a transducer reads a configuration, a spin value
is encountered for which there is no transition, then that
configuration is rejected. We conclude that it is not a
member of the configuration ensemble. For example, the
sequence 11].| is rejected since there is no transition leav-
ing state G when a | is read.

To conclude that a configuration S is statistically con-
sistent with the configuration from which the e-machine
was built, s must do more than correspond to a path
through the transducer. It must also produce the cor-
rect percentage of @ and 3 subpatterns. Fig. (21) tells
us that proper configurations are a type of a biased coin:
with probability 0.68 a 1 is generated and with probabil-
ity 0.32 a |11 is generated. If a configuration produced
by the e-machine of Fig. (21) is used as input to the
transducer of Fig. (22), then the fraction f, of a’s in the
output produced is:

0.68
fa

0.68 + 3 x 0.32

(127)
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Thus, if a configuration is read in to the transducer and
the fraction of a’s produced approaches 0.42, then we
conclude that it is statistically identical to the original
one.

For this case, the simple form of the e-machine of Fig.
(21) lets us easily compute the finite-size scaling of the
transducer output. Thus, thinking of the e-machine as
a biased coin, it immediately follows that the number of
a’s expected in a length-N configuration is:

# of o's ~ 0.42 x N +/0.42 x 0.58N , (128)
or,
fo =042+ 0.49N"1/2 (129)

Here we have ignored the number of spins needed to syn-
chronize to the pattern. This simple calculation assumes,
consistent with the law of large numbers, that the devi-
ations from f, are small. The correct way to estimate
the fluctuations for e-machines uses methods from large
deviation theory, as done in [92].

Analytically calculating (as here) or empirically recon-
structing e-machines enables us to discover patterns. An-
alyzing the e-machine reveals what the patterns are. And
the transducer—a simple modification of the e-machine—
tells us how we can detect these patterns. One can do
more, such as calculate the expected error in the trans-
ducer’s output for finite-length input strings, as we have
just outlined.

A similar structural analysis of the configurations in
the B = 2 transition region follows from the e-machine
of Fig. (23). For example, we again see a mixture of
two periodic patterns. This time period-2 and period-3
subpatterns combine. Configurations consist of a “back-
ground” of 1|1 with a period-2 component of |1’s in-
serted between the two 1’s of the background pattern.
The probability that M period-2 blocks are inserted is
given by:

0.43 M=0

Pr(M 1| —blocks) = { 05T M > 1

} . (130)

In summary, the preceding subsections illustrated how
e-machines provide a complete, minimal description of
the patterns or regularities contained in (entropic) spin
configurations. Roughly speaking, they may be viewed
as the irreducible representations of the statistical sym-
metries of the system. As such, an e-machine provides
a much more complete and informative description of a
pattern than is available within information theory or
statistical mechanics. In contrast, Figs. (19) and (20)
do not strike us as being structurally very informative.
It’s clear from these plots that there is a transition be-
tween periodic behaviors, but the specifics of the struc-
tural changes are not at all obvious.

The dip in the excess entropy and the peak in the en-
tropy density at the transition regions give a general in-
dication of high-entropy, low-apparent-memory configu-
rations. These structures are not periodic and, thus, are



not compactly described by the structure factors that
implicitly assume the system has strong periodic com-
ponents. However, the configurations most certainly are
not structureless. The e-machine analyses showed that
the constituent periodic patterns mix in very particular
ways. This explicit analysis of patterns is not available
within the existing frameworks of statistical mechanics
or information theory.

Lastly, recall that our description of spin configurations
began with a Hamiltonian with nearest and next-nearest
neighbor interactions, which in turn led to a 4 x4 transfer
matrix. The Hamiltonian and the transfer matrix both
determine all the information about the system in the
sense that they can be used to calculate the probability,
and thus the energy, of any configuration. However, nei-
ther the Hamiltonian nor the transfer matrix capture the
intrinsic information processing in the explicit way an e-
machine does nor do they provide a minimal description
of the underlying patterns.

1 10.43

1 11.00

L 10.57

FIG. 23. The recurrent portion of the e-machine for the sys-
tem shown in Figs. (19) and (20) with the external field fixed
at B = 2.0. The other parameters are J; = —3.0, Jo» = —1.0,
and T = 0.2.

VIII. PHENOMENOLOGICAL COMPARISON OF
EXCESS ENTROPY AND STATISTICAL
MECHANICAL QUANTITIES

At this point we have reached our two main conclu-
sions. First, the entropy density h, and the excess en-
tropy E together serve to detect periodic structure at
any wavelength. If h, = 0, then 1D spin systems are
exactly periodic with period P = 2F. Second, we have
seen that the e-machine is the underlying pattern in the
sense that it is a minimal representation of all the (group
and semigroup theoretic) regularities produced by a pro-
cess. Excess entropy and e-machines complement each
other. E measures a system’s apparent spatial memory,
while an e-machine gives direct access to how a system is
organized and how it processes information. The causal
states, part of an e-machine, reveal the hidden, effective
states of a process.
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Before we conclude, however, there are a few remain-
ing issues that need addressing. Specifically, we need to
explicitly compare the excess entropy with some of the
statistical mechanical functions defined in Sec. II to see
if there are additional statistical mechanical observables
that could play the role that E does.

A. Excess Entropy versus Correlation Length

We begin by comparing excess entropy with the corre-
lation length £, defined by Eq. (15). Qualitatively, their
behavior is similar, as can be seen in Fig. (24) where they
are plotted as a function of temperature for a ferromag-
netic system in an external field. These two functions
have different units; E is measured in bits per site, while
¢ is a length measured as a number of lattice sites. Thus,
their relative magnitudes cannot be meaningfully com-
pared.

However, we can compare their qualitative behavior as
the temperature is varied. Looking at Fig. (24), we see
that both quantities have a single maximum as a function
of temperature. However, their maxima occur at differ-
ent temperatures: £ is maximized at T =~ 1.55, while E
reaches a maximum at 7' = 1.90. This indicates that
they are not related to each other by a simple multiplica-
tive constant. Note that £ is linear for small T' while E
vanishes exponentially.

0.12

0.09 |
006} /

0.03 |/

Excess Entropy E [bits]

Correlation Length & [lattice sites]

Temperature T

FIG. 24. E and ¢ versus T for a nn ferromagnet with
J1 =1.0 and B =0.5.

A more important difference, though, is that E and
& have very different physical interpretations. On the
one hand, the correlation length ¢ measures the rate at
which correlations between spins decay as a function of
increasing distance. The decay rate provides little or no
information about how much total correlation or memory
is present. The excess entropy, on the other hand, mea-
sures the mutual information between two semi-infinite
halves of the configuration and thus provides a measure
of the total spatial memory of the system.



B. Excess Entropy versus Specific Heat

In Fig. (25) we plot the specific heat C' and the ex-
cess entropy E as a function of temperature. As in the
comparison of E and &, they carry different units and so
their numerical values can’t be compared. Qualitatively,
their behavior is more similar. However, they are maxi-
mized at different temperatures; C' reaches a maximum
at T = 1.55 while E, as above, attains its maximum value
at T =~ 1.90.

Nevertheless, these two quantities measure very differ-
ent properties of the system. As mentioned in discussing
Eq. (25), the specific heat measures the system’s energy
fluctuations. While these fluctuations may be evidence of
correlations between different degrees of freedom, leading
to a large E, this most certainly is not always the case.
For example, a paramagnet has a nonzero specific heat
that shows a single maximum just as C' does in Fig. (25).
Yet a paramagnet, by definition, has no correlations be-
tween spins. Accordingly, the excess entropy of a param-
agnet vanishes for all values of the temperature and the
external field. Since the specific heat does not vanish for
such a system, it is clear that C' cannot be viewed as
providing any general indication of spatial structure.

0.12 0.8
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Excess Entropy E [bits]

Specific Heat C [energy/degree]

Temperature T

FIG. 25. E and specific heat C versus T for a nn ferromag-
net with J =1.0 and B = 0.5.

C. Excess Entropy versus Particular Structure
Factors

In Fig. (26) we have plotted E and S(0) versus tem-
perature. The system is ferromagnetic with J = 1.0 and
B = 0.5. Thus, we have chosen to plot the structure
factor for ¢ = 0 since a priori we expect ferromagnetic
behavior—i. e., configurations with period 1. The behav-
ior of E in this case has been discussed above.

In the low temperature limit S(0) vanishes. Since all
the spins align with the magnetic field as T — 0, (s)? and
(s0s,) approach 1 for all 7. Hence, I'(r) = (sgs,) —(s)? =
0 and so S(0) vanishes.

In contrast, the high temperature behavior of S(0) is a
little surprising—based on the above argument one would
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expect S(0) to go to zero as T goes to infinity and as the
correlations vanish. However, recall that S(0) contains
a “self-correlation” term, I'(0) = (soso) — (s)?. At high
temperatures, the spins are randomly oriented so (s)? =
0. However, (sgsg) = 1 for all temperatures since sg €
{+1,-1}. Thus, I'(0) > 1 as T — 00, so S(0) — 1 as
T — oc.
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FM Structure Factor S(0) [spinsz]

Temperature T

FIG. 26. E and S(0) versus T for a nn ferromagnet with
J =1.0 and B =0.5.

In between these temperature extremes, there is a re-
gion where the correlation between spins is largest. Here,
the system is neither random, as it is at high tempera-
tures, nor is it trivially ordered, as it is at low tempera-
tures. Not surprisingly, both S(0) and E reach a single
maximum in the intermediate regime.

However, note that E and S(0) attain their maxima at
different temperature values. The structure factor S(0)
is maximized at T = 2.90, and E is maximized at T =~
1.90. As discussed in Sec. VI, a given structure factor is
designed to return a large signal if there are correlations
present at that wavenumber. Its numerical value does
not have a direct interpretation.

The shape of the curve in Fig. (26) is unchanged if
either of the two modified structure factors defined in
Egs. (22) and (23) are substituted for S(0). And none of
these structure factors are maximized at the same tem-
perature that maximizes E.

D. Excess Entropy versus I'(1)

As our last phenomenological comparison, Fig. (27)
plots the nearest-neighbor correlation function I'(1) and
the excess entropy E as a function of the temperature T'.
Like the structure factor, TI'(1) carries units of [spins?],
not bits. As in the preceding examples, the two func-
tions are maximized at different temperatures: I'(1) is
maximized at T = 2.50.
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FIG. 27. E and I'(1) versus T for a nn ferromagnet with
J=1.0 and B =0.5.

That I'(1) and E reach a maximum at different temper-
atures is especially noteworthy since we are considering
a system with only nearest-neighbor interactions. One
might reasonably expect that for a system with such lo-
cal, pairwise interactions, the nearest-neighbor two-spin
correlation function would be sufficient to capture the
system’s global correlations. Fig. (27) shows that this is
not the case. Even for a system with nn interactions, the
nearest-neighbor correlation function does not measure
apparent spatial memory as the excess entropy does.

E. Phenomenological Observations

Statistical mechanics possesses several functions that
are similar to the excess entropy, but none can be in-
terpreted as measures of spatial memory as E can be.
We have seen that the correlation length, specific heat,
and the structure factors exhibit behavior qualitatively
similar to the excess entropy for the particular class of
systems studied here. However, none of these statisti-
cal mechanical quantities returns a numerical value that
quantifies memory. The excess entropy, being defined as
a mutual information, carries units of bits, appropriate
for this type of structural feature.

Moreover, we have seen in this section that each of
these quantities reaches a maximum at different system
parameters. This means that the statistical mechani-
cal functions cannot be used to determine the parameter
setting at which a given system’s spatial memory is the
largest. Simply put, to measure (apparent) spatial mem-
ory, one must use E.

IX. CONCLUSION

In summary, we have reviewed three complemen-
tary approaches to correlational structure. In Sec. II
we briefly recounted statistical mechanical measures of
structure: the correlation length &, the two-spin corre-
lation function I'(r), and the structure factors S(g). In
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Sec. III, we discussed an information-theoretic approach
to memory and structure, first reviewing different forms
of the Shannon entropy H and then focusing on the ex-
cess entropy E. Lastly, in Sec. IV, we reviewed compu-
tational mechanics, a computation-theoretic approach to
memory and structure, and introduced the e-machine, a
minimal representation of the deterministic and statisti-
cal regularities of a system. We then showed in Sec. V
how e-machines and the excess entropy E can be deter-
mined for one-dimensional, finite-range spin systems.

The next three sections developed a direct compari-
son of statistical mechanical, information theoretic, and
computational mechanical approaches to structural com-
plexity. There were three main conclusions that emerged
as a result of these comparisons.

First, in Sec. VI we saw that the excess entropy E
serves as a wavelength-independent measure of periodic
structure. In particular, if a spin system is periodic with
period P then h, =0 and E = C}, =log, P.

Second, in Sec. VII we showed that to fully capture the
structure in highly entropic systems, one must examine
e-machines. An e-machine reveals how the memory is
organized and gives all of the system’s (measure) semi-
group theoretic properties.

Finally, in Sec. VIII we explicitly compared the ex-
cess entropy to the specific heat, correlation length,
nearest-neighbor correlation function, and the ferromag-
netic structure factor. We saw that these statistical me-
chanical functions behave similarly, but not identically
to E. More importantly, none of these functions has a
numerical value that can be directly interpreted as mem-
ory, as E can be. In short, then, our comparison of differ-
ent approaches to structure has shown that information
theory and computational mechanics capture important
properties of a system that statistical mechanics misses.

Several ancillary observations, based on the foregoing
results, are now in order. First, we have seen that for
1D spin systems the number of causal states and their
connectivity typically does not change as spin system pa-
rameters are varied. What does change, however, are the
probabilities of the causal states and their transitions. In
contrast, for deterministic dynamical systems it is typi-
cally the number of causal states that change as the sys-
tem parameters are varied [11,29]. Thus, it is our belief
that “topological” measures of structure or complexity
such as those of Refs. [101] and [102]—i.e., those that ac-
count for configurations only in terms of whether they are
allowed or disallowed, and so ignore their probabilities—
will not adequately capture important structural changes
in statistical mechanical systems.

Second, approaches to structural complexity, such as
those of Refs. [16], [20], and [103], that are based on
the Kolmogorov-Chaitin (KC) complexity, strike us being
of little use for addressing the questions of pattern and
organization posed here. Our concerns about these KC
complexity-based approaches are three-fold.

First, by adopting a UTM, the most powerful discrete
computational model, one loses the ability to distinguish



between systems that can be described by different com-
putational models less powerful than a UTM [11,2].

Second, and perhaps more importantly, the KC com-
plexity is uncomputable in that there exists no general
algorithm for its computation. Thus, approaches focus-
ing on KC complexity, including logical depth [16], tend
to be nonconstructive. In contrast, in the mathematical
domain there are broad classes of processes for which the
excess entropy and e-machines can be determined. In
the empirical domain, moreover, there exist algorithms
for estimating the excess entropy and determining an e-
machine. The computational complexity of these algo-
rithms is determined by the class of processes analyzed.
Indeed, for the 1D spin systems studied here, we gave
closed-form expressions for various complexity measures
of interest.

Third, KC complexity-based approaches inherit a fun-
damental relativity—a relativity that is built into how
regularity and structure are accounted for and that de-
rives from the UTM’s lack of uniqueness and minimal-
ity. Computational mechanics takes a completely differ-
ent approach and makes a specific commitment to causal
states and e-machines as a fundamental representation
for the intrinsic computation embedded in a process.
It also associates this, via the algebraic structure of e-
machines, with a system’s internal organization and the
patterns the system produces.

Thus, given the problems arising from KC complex-
ity being based on UTMs, it seems to us that these ap-
proaches to structure and pattern will continue to find
few empirical applications. Significant supplemental as-
sumptions would have to be introduced to make these
approaches viable. In contrast, due to its specificity of
representation, computational mechanics is testable and
its hypotheses—e.g., linking pattern, organization, and
computation—are refutable.

We conclude by discussing some open questions and
possible areas of application. It remains an interesting
open question as to how E characterizes quasiperiodic
or more general h, = 0 aperiodic configurations. Unfor-
tunately, the simple spin systems analyzed here are not
rich enough to address this question. Another important
set of issues concerns extending the information theoretic
and computational mechanics approaches to more than
one spatial dimension. There has been some preliminary
work in these areas [32,63,101], but much remains to be
done. For example, some work done on two-dimensional
systems [26,104] calculates quantities that are essentially
one-dimensional in character and so fail to adequately
capture the nature of correlations and organization in
two dimensions. In our view, a careful, genuinely two-
dimensional treatment of a two-dimensional system is
still lacking.

Another important set of open questions concerns the
development of better techniques for estimating the ex-
cess entropy and reconstructing e-machines in experi-
mental settings. At present, there is no complete the-
ory of statistical error estimation for inferring e-machines
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from finite data. Another somewhat related, and perhaps
more important issue, concerns developing direct meth-
ods for experimentally estimating (say) excess entropy in
a wider range of settings than those in which digitized
data streams are available. For example, the structure
factors S(g) can be estimated from neutron scattering
experiments in a natural way. Can E also be measured
in an analogously direct fashion? If so, the discovery
and characterization of novel materials would be greatly
facilitated.

Finally, there are a number of issues that parallel our
comparisons with elementary statistical mechanics, but
that relate to phase transitions and critical phenomena.
Are the intrinsic computational properties reflected in
the excess entropy or in infinite e-machines the same
within universality classes? If they are universal, do they
scale with different exponents and so capture different as-
pects of (say) a critical state than presently appreciated?
Or do computational mechanical and information theo-
retic quantities fall short of current notions of universal-
ity? Since they reflect rather more detailed features of
the underlying distributions than typical universal quan-
tities, they may not be universal. But if they fail to
be universal, there may be some unsettling conclusions
about using concepts and methods from the theory of
phase transitions and critical phenomena to study infor-
mation processing in nature. In either case, we believe
that answering these questions will be an essential step
toward understanding how nature organizes and how its
emergent structures take on functionality.
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APPENDIX A: ON THE EQUIVALENCE
RELATION ~ THAT INDUCES CAUSAL STATES

Consider the set § of all left-half configurations, of any
length:
— <_L
S= {S =Sp_1'""5_1: 8 €A, LIO,].,} . (Al)
0
Recall that s = A, the empty string. It was claimed in
Eq. (53) that

K L

5i ~85 o Pr(s|s )=Pr(s |5 ), (A2

for all semi-infinite s= s05182--+, where K, L =
—

0,1,2,..., defined an equivalence relation ~ over S. Here



we show that this is indeed the case by reviewing the ba-

sic properties of relations, equivalence classes, and par-

titions. (The proof details are straightforward and are

not included. See Ref. [105].) We will drop the length
—

! n
variables K and L and denote by ‘E, s , s

of any length in the set of Eq. (Al).
—

First, ~ is a relation on § since we can represent it as
a subset of the Cartesian product

)

€ S members

—

S x8={55)55% es}. (A3)

-
Second, the relation ~ is an equivalence relation on §
since it is
. — — <
1. reflexive: s~s,V S€S;

R e —!
2. symmetric: s~ s = s ~3§; and

—
=8~ S .

«n
~ 8

! —!

- < <
3. transitive: s~ s and s

. P i . .
Third, if s€S, the equivalence class of s is

}- (A4)

!
(5]={5 €s:
— —
The set of all equivalence classes in S is denoted § / ~

and is called the factor set of § with respect to ~. In Sec.
IV B we called the individual equivalence classes causal
states S, and denoted the set of causal states S = {S, :
a=0,1,...,k—1}. Thatis, S =§ / ~. (We noted in
the main text that k£ = |S| may or may not be infinite.)

Finally, we list several basic properties of the causal
state equivalence classes.

— —
L Us s[5]=s.

UL S, =S

—
S

[\V]

3. [s]=[5]es~%

~

—

4. If ?, ?I €8, either

+—

(a) [s

(b) [s]
5. The causal states S are a partition of § That is,

(a) Sy # 0 for each «,

(b) U5Z6 Sa =S, and

(€) SaNSp =0 for all a # .

We denote the start state with Sg. The start state is
the causal state associated with s= A. That is, So = [A]-

Each causal state equivalence class S, thus has several
structures attached:

IN[sT1=0or

=[5].

1. The index a—the state’s “name”.
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2. The set of left-half configurations, of various
lengths, comprising the equivalence class: [‘g]

{5e 8.}

3. A conditional distribution over right-half configu-
rations: Pr(? | ‘5), S€ S,. We denote this distri-
bution more concisely by Pr(g> |Sa)-

As noted in the text, the definitions and properties of
the causal states obtained by scanning in the opposite

bty
direction, i. e., the causal states S / ~, follow similarly.

For general processes, § /| ~# § / ~.

For completeness, we note that this construction of
causal states is analogous to Nerode equivalence, used to
determine the minimal number of states for a finite-state
machine representation of a regular language [76,106]. It
is also somewhat similar to the states estimated in Ris-
sanen’s “context” algorithm [107]. Despite these simi-
larities, there are important differences. With Nerode
equivalence infinite strings and probability measures over
them are not considered. For a random source—for which
there is a single causal state—the context algorithm esti-
mates a number of states that diverges (logarithmically)
with the length of the data stream.

APPENDIX B: TRANSIENT STRUCTURE
FROM THE RECURRENT «MACHINE

In this appendix we show how transient states can be
constructed from the recurrent portion of an e-machine.
The latter, denoted M(®)| consists of the recurrent causal

states SV and their transitions To(fﬁ), where the indices a
and [ run over only the recurrent causal states. That the
transient states can be constructed in this manner is a
direct consequence of the equivalence relation ~, defined
in Eq. (53), that induces the causal states.

The basic idea of the construction procedure, detailed
below, is as follows. First, we assume the generating pro-
cess has been operating sufficiently long so that it is in
equilibrium in the sense that it is being controlled by
its recurrent causal states. We also assume we have a
model of the process, namely M(®) in hand. Then we
begin making measurements—reading in spin values from
a configuration—sgs1 Ss . . .. With each measurement, we
ask: In which recurrent causal state is the process? Ini-
tially, while making measurements and, of course, even
before making the first, we are uncertain about which re-
current causal state the process is in. Thus, we describe
our state of knowledge by a distribution over St de-
noted Pr(SU™)|sgs152---s1,_1). As we observe successive
spins, this distribution changes. The structure of the ma-
chine M(® determines the change when we observe an
individual spin. Presumably, with a sufficient number
of spin measurements we become synchronized with the
process: That is, we know with certainty in which re-
current, state the process is. This procedure of tracking



how our state of knowledge Pr(S™® |sosysy---55 1) re-
fines and focuses on smaller and smaller subsets of S(*)
determines the transient causal states. From here on we
will drop the superscript (R) on S, when no ambiguity
arises.

Since we assume the process is in equilibrium, we take
the initial probability distribution—that associated with
having made no measurements—to be the asymptotic
distribution over the recurrent causal states, which is
given by Eq. (63). This initial distribution is denoted
Pr(S|A) to indicate that it is the distribution before
any spins have been observed. (Recall that A\ denotes
the empty string.) After observing spin so our state of
knowledge about the recurrent causal state of the process
has improved and is now described by the distribution
Pr(S]|so). Upon observing the next spin s, our state of
knowledge becomes Pr(S|sos1).

We may associate the recurrent causal state distribu-
tions with the causal states themselves. For example, a
distribution that specifies a recurrent causal state with
certainty—i. e., probability 1 of being in that state—can
be taken to be that recurrent state. The transient states,
in contrast, are those distributions in which the recurrent
causal state is not known with certainty.

Pr(1| Pr(SIn) ) Pr(r| Pr(S|n) )

FIG. 28. First steps in performing transient state construc-
tion for the case of a spin-1/2 system where s; € {1,]}. The
double oval indicates the start node no.

The procedure through which the transient states are
deduced proceeds by constructing a tree T = {N, L} con-
sisting of a set of nodes N and a set of links £ connecting
the nodes. A node n € A in the tree corresponds to a
recurrent causal state distribution Pr(S|sgs1 ---sr—1). A
link 45 € L corresponds to a transition between succes-
sive causal state distributions that occurs upon observing
a particular spin value s. We call a tree node for which
all the outgoing links have yet to be determined a leaf.
We denote the set of leaves by N.

The tree is constructed recursively via the following
steps:

1. Initialize: Given a recurrent e-machine M) =
{S (R),TSB)} determine the asymptotic probability
of the recurrent causal states via Eq. (63). This
distribution is the starting node for the tree ng
Pr(S|A) and is indicated in Fig. (28) by the node
with the double oval. At this stage ng is a leaf,
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since we have not yet determined all the links (tran-
sitions) that leave it. Thus, N' =0 and N = {ne}.

2. Build Transient Tree: While A is nonempty:

(a) Determine Links: For each leaf n
Pr(S|s”) € N draw a link ¢, € £ (an out-
going transition) for each spin value s. La-
bel the link with the transition probability
Pr(s|n) that starting in node n spin value s
is seen:

Pr(s|n) = Z Pr(S8")Pr(s|S’) .

S'eSR)

(B1)

If the transition has zero probability, ignore
Ls.

Form Node Distributions: For each
link £, determine the probability distribution
Pr(S|sts) to which it leads using;
Pr(S|sts) =
Ysesm Pr(8'[s")Pr(S]s, )
Y ,sesm Pr(S'[sL)Pr(S|s,S') -

(B2)

Note that the term in the denominator is sim-
ply a normalization. The quantity Pr(S|s’s)
gives the updated distribution over recurrent
causal states after having observed the partic-
ular spin sequence s”s. Recall that, since the
e-machine is deterministic, Pr(Sls,S') = 1 if
the transition is allowed and 0 otherwise.
Merge Duplicate Nodes: Now consider,
in turn, the probability distributions just
formed: n = Pr(S|s’s). Is n identical to an-
other node distribution n' € N'?

i. If yes, then connect £5 to node n'.
ii. If no, add n to the set A" of tree leaves.

3. Minimize: The resulting machine has a recurrent
part that is identical to M(®) but it may not be
minimal. Merge nodes pairwise under the equiv-
alence relation ~ of Eq. (53). The result is the
complete e-machine, with all transient and recur-
rent states.

We illustrate the above procedure by considering a
period-4 process. The recurrent portion of its e-machine
M) is shown in Fig. (29). The result of the first several
steps of the transient state construction procedure is il-
lustrated in Fig. (30). The asymptotic probability of each
recurrent causal state is 1/4. Thus, as per step 1 above,
the start node is labeled Pr(S|\) = (1/4,1/4,1/4,1/4);
it is shown as the double oval of Fig. (30).



t

mm
Tl

il

FIG. 29. Recurrent portion of the period-4 e-machine.

FIG. 30. The tree T part of the way through transient state
construction for the period-4 process. To construct this tree
spin blocks up to length 3 were examined.

From the start node, two transitions are possible—one
for s =1 and one for s = . In the figure they are labeled
with the transition probabilities as given by Eq. (B1).
For example, from ng the probability of seeing s =1 is

given by: The process of adding links and nodes to the tree 7 is

shown repeated up to length-3 spin blocks in Fig. (30).

last level of the tree, transitions that occur with
Pr(1 [n) = Pr(A)Pr(1 |A) + Pr(B)Pr(t [B) + At the : . :
ili . i t that
Pr(C)Pr(1 |C) + Pr(D)Pr(1 |D) (B3) probability 0 are not drawn. At this point, notice tha
(

the leaves at the bottom level have already appeared as
=1/9(1) + 1/9(1) + nodes above in the tree. For example, the lower left leaf
(1/4)(0) + (1/4)(0) = 1/2. (B4) is identical to the node that is second from the left, one
level above. Thus, as per step 2(c)i, the link pointing to
The leaves (causal state distributions) to which the  the leaf node is directed to the pre-existing node. This
links (transitions) lead are determined by Eq. (B2). For  reconnection step is repeated until there are no leaves
example, consider the | transition from ng. The normal-  left. The result is illustrated in Fig. (31).
ization factor, the denominator in Eq. (B2), is 1/2 and
the probability of being in causal state A is given by:

Pr(S=A|])=2 Z Pr(S"Pr(A| ], S") (B5) ) 1|1/2

S'eSR)

=2 [Pr(A)Pr(A| 1, A) +Pr(B)Pr(A| |,B)
+ Pr(C)Pr(A| |, C) + Pr(D)Pr(A| |, D)] (B6)

=2 [(1/4)(0) + (1/4)(0)+

(1/4)(0) + 1/H(1)| = 1/2. (B7) ! T

Similarly, one finds that Pr(D| }) =1/2 and Pr(B| |) =
Pr(C| |) = 0. As a result, this node is associated with
the distribution Pr(S| }) = (1/2,0,0,1/2).

FIG. 31. The end result of transient state construction for
the period-4 process after duplicate leaves are removed.

The final result of the procedure, shown in Fig. (31),
is the complete e-machine with all recurrent and tran-
sient states. The recurrent states—distributions over re-
current causal states that determine individual causal
states—are the four nodes along the bottom of the fig-
ure. They are identical to those we started out with
in Fig. (29). The three transient states that have been
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constructed are the three nodes whose distributions cor-
respond to some uncertainty about in which recurrent
causal state the process is. In this way, the structure of
the transient portion of an e-machine shows how succes-
sive measurements refine an observer’s knowledge about
in which causal state a process is.

APPENDIX C: e MACHINE ENTROPY DENSITY

We derive Eq. (79), an expression for the entropy den-
sity h, in terms of the probability of the causal states
and their transitions. We begin with the expression for
the entropy density, Eq. (36):

hu = lim H[SL'Sl“‘SL_QSL_l] . (Cl)
L—oo
Using the definition of the conditional entropy, Eq. (28),
this may be rewritten as:

Z Pr(sL,sL_1

sp,sL—1

h, = lim — ) log, PI"(SL|5L_1)a (C2)

L—oo

where sy, denotes the single spin variable at site L and
st~ denotes the block of L—1 spins from sites 1 to L—1.

The causal states S, partition the set {s£~'}; each
sL~1 belongs to one and only one causal state equivalence
class. (Cf. App. A.) As a result we may reexpress the
sum as follows:

Z Z Pr(sz,s

sp,ask—1e§,

hy = lim — L= log, Pr(sg|s"~ 1) .

L—oco

(C3)

Causal states were defined in Eq. (53) such that two
blocks of spins sffl and sffl belong to the same causal
state if and only if Pr(g> |sF71) = Pr(? |sf_1), Vs,
This observation enables us to perform the inner sum in
Eq. (C3). Each term in the argument of the logarithm is
identical, since all the s~!’s belong to the same causal
state. As a result, we can pull this term outside the sum:

Z [log2 Pr(sp|Sa) Z Pr(sg,s _1)] .

s, st—1e8,
(C4)

ho = i -

Note that since we are interested in the L — oo limit, we
need only concern ourselves with recurrent causal states.
The inner summation has the effect of adding up the
probabilities of all the sL~1’s in the ot causal state:

Z Pr(sp,s’™ 1)

sk-1e8,

=Pr(sr,Sa) - (C5)

Inserting this into Eq. (C4), we immediately obtain

- Z Z Pr(s,Sy)log, Pr(s|Sy) ,

a seA

(C6)
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where s € A are the spin values that can follow S,. This
result is Eq. (79). A little more explicitly we have

B = = 3 Pr(Sa) S Pr(slSa) log, Pr(slSa) |

s€A
where Pr(S,) is the left eigenvector of the stochastic con-
nection matrix T, normalized in probability, and the sec-
ond sum is seen to be the single-spin uncertainty at each
causal state.
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