Overview and Motivation

- Complex systems pose ^a challenge for mathematics and mathematical sciences.
- Can mathematics be used at all for such systems? Or are such systems simply too complex to be simplified via mathematics?
- Central premise: the abstractions of mathematics and mathematical models can be used to gain qualitative insight into complex systems.
- In my remarks I will focus on two questions:
	- 1. What is complexity?
	- 2. What does it mean to model?
- I hope to convince you that the first question cannot be answered without answering the second question.

David P. Feldman

http://hornacek.coa.edu/dave

SHE Workshop, 19 October 2006: The Objective Relativity of Complexity and Entropy 4

• Figure source: Crutchfield, 1992.

SHE Workshop, 19 October 2006: The Objective Relativity of Complexity and Entropy 1 **Mathematics for Complex Systems: The Objective Relativity of Complexity and Entropy David Feldman** College of the Atlantic andThe Santa Fe Institute http://hornacek.coa.edu/dave/ Collaborator: Jim Crutchfield (UC Davis and SFI) Thanks to: Carl McTague, Cosma Shalizi, Karl Young

David P. Feldman

http://hornacek.coa.edu/dave

SHE Workshop, 19 October 2006: The Objective Relativity of Complexity and Entropy 3

Why Complexity?

- Complexity is generally understood to be ^a measure of the difficulty of describing ^a thing or ^a process.
- There are many different contexts in which the term complexity is used:
	- **–** Complexity as ^a measure of difficulty of learning ^a pattern (Bialek, et al, 2001)
	- **–** Biological and ecological systems exhibit different levels of complexity and organization which we can study
	- **–** Complexity(?) in evolution (McShea, 1991)
	- **–** Complexity as measure of structure or pattern or correlation.
- I will focus on this last sort of complexity, but I think my general results extend to other types of complexity.

- The observer can determine the frequency (or probability) of occurrence of different sequences of 0 's and 1 's.
- Information theory gives us ^a way to measure properties of the sequence.

David P. Feldman

http://hornacek.coa.edu/dave

SHE Workshop, 19 October 2006: The Objective Relativity of Complexity and Entropy 7

Shannon Entropy

Any time we use ^a probability distribution, this indicates some uncertainty.

However, Some distributions indicate more uncertainty than others.

<code>The Shannon Entropy H is the measure of the uncertainty associated with</code> **a probability distribution:**

$$
H[X] \equiv -\sum_{x} \Pr(x) \log_2 \Pr(x) . \tag{1}
$$

- \bullet A **Fair Coin**: (Probability of heads $= \frac{1}{2}$) has an unpredictability of 1 .
- \bullet A **Biased Coin**: (Probability of heads $= 0.9$) has an unpredictability of 0.47 .
- A **Perfectly Biased Coin**: (Probability of heads ⁼ 1.0) has an unpredictability of 0.00.

The conditional entropy is defined via:

$$
H[X|Y] \equiv -\sum_{x} \Pr(x, y) \log_2 \Pr(x|y) . \tag{2}
$$

David P. Feldman

http://hornacek.coa.edu/dave

SHE Workshop, 19 October 2006: The Objective Relativity of Complexity and Entropy 8

Excess Entropy

- $\bullet~$ The excess entropy ${\bf E}$ is defined as the total amount of randomness that is "explained away" by considering larger blocks of variables.
- One can also show that ${\bf E}$ is equal to the mutual information between the "past" and the "future":

$$
\mathbf{E} = I(\overrightarrow{S}; \overleftarrow{S}) \equiv H[\overrightarrow{S}] - H[\overrightarrow{S} | \overleftarrow{S}].
$$

- $\bullet\, \to \to$ is thus the amount one half "remembers" about the other, the reduction in uncertainty about the future given knowledge of the past.
- $\bullet\,$ Equivalently, ${\bf E}$ is the "cost of amnesia:" how much more random the future appears if all historical information is suddenly lost.

Excess Entropy and Entropy Rate Summary

- Excess entropy E is a measure of complexity (order, pattern, regularity, correlation ...)
- $\bullet\,$ Entropy rate h_μ is a measure of unpredictability.
- $\bullet\,$ Both ${\bf E}$ and h_μ are well understood and have clear interpretations.
- For more, see, e.g., Grassberger 1986; Crutchfield and Feldman, 2003.
- \bullet I'll now consider 3 examples that illustrate some of the subtleties that are associated with measuring h_μ and ${\bf E}.$

David P. Feldman

http://hornacek.coa.edu/dave

SHE Workshop, 19 October 2006: The Objective Relativity of Complexity and Entropy 11

Example II: A Randomness Puzzle

- Suppose we consider the binary expansion of π . Calculate its entropy rate h_{μ} and we'll find that it's 1.
- How can π be random? Isn't there a simple, deterministic algorithm to calculate digits of π ?
- Yes. However, it is random if one uses histograms and builds up probabilities over sequences.
- This points out the *model-sensitivity* of both randomness and complexity.

• Histograms are ^a type of model. See, e.g., Knuth 2006.

Example I: Disorder as the Price of Ignorance

- Let us suppose that an observer seeks to estimate the entropy rate.
- $\bullet~$ To do so, it considers statistics over sequences of length L and then estimates h_μ using an estimator that assumes $\mathbf{E}=0.$
- $\bullet\,$ Call this estimated entropy $h_\mu{}^\prime(L)$. Then, the difference between the estimate and the true h_μ is (Proposition 13, Crutchfield and Feldman, 2003):

$$
h'_{\mu}(L) - h_{\mu} = \frac{\mathbf{E}}{L} \tag{3}
$$

- In words: The system appears more random than it really is by an amount that is directly proportional to the the complexity ${\bf E}.$
- \bullet In other words: regularities (E) that are missed are converted into apparent randomness ($h_\mu'(L)-h_\mu$).

David P. Feldman

http://hornacek.coa.edu/dave

SHE Workshop, 19 October 2006: The Objective Relativity of Complexity and Entropy 12

Example III: Unpredictability due to Asynchrony

 \bullet Imagine a strange island where the weather repeats itself every 5 days. It's rainy for two days, then sunny for three days.

- You arrive on this deserted island, ready to begin your vacation. But, you don't know what day it is: $\{A,B,C,D,E\}.$
- Eventually, however, you will figure it out.

Example III: Unpredictability due to Asynchrony

- $\bullet\,$ It turns out that different periodic sequences with the same P can have very different $\mathbf T$'s.
- $\bullet~$ For a given period P :

$$
\mathbf{T}_{\max} \sim \frac{P}{2} \log_2 P \,, \tag{5}
$$

and

$$
\mathbf{T}_{\min} \sim \frac{1}{2} \log_2^2 P \,, \tag{6}
$$

• E.g., if
$$
P = 256
$$
, then

$$
\mathbf{T}_{\text{max}} \approx 1024 \text{ , and } \mathbf{T}_{\text{min}} \approx 32 \text{ .}
$$
 (7)

• For much more, see Feldman and Crutchfield 2004.

David P. Feldman

http://hornacek.coa.edu/dave

SHE Workshop, 19 October 2006: The Objective Relativity of Complexity and Entropy 16

Conclusion: Modeling Modeling

- I have aimed to present an abstraction of the modeling process itself.
- These examples provide ^a crisp setting in which one can explore trade-offs between, say, the complexity of ^a model and the observed unpredictability of the object under study.
- The choice of model can strongly influence the result yielded by the model. This influence can be understood.
- The hope is these models of modeling can give us some general, qualitative insight into modeling.
- In my view, to study complex systems we often need to refine existing mathematical techniques and broaden our scope. However, we do not need ^a new kind of science.

Example III: Unpredictability due to Asynchrony

- Once you are synchronized—you know what day it is—the process is perfectly predictable; $h_{\mu}=0$.
- However, before you are synchronized, you are uncertain about the internal state. This uncertainty decreases, until reaching zero at synchronization.
- $\bullet \,$ Denote by $\mathcal{H}(L)$ the average state uncertainty after L observations are made.
- The total state uncertainty experienced while synchronizing is the **Transient Information** T:

$$
\mathbf{T} \equiv \sum_{L=0}^{\infty} \mathcal{H}(L) \ . \tag{4}
$$

David P. Feldman

http://hornacek.coa.edu/dave

- In all cases choice of representation and the state of knowledge of the observer influence the measurement of entropy or complexity.
	- 1. Ignored complexity is converted to entropy.
	- 2. π appears random.
	- 3. A periodic sequence is unpredictable.
- Hence, statements about unpredictability or complexity are necessarily ^a statement about the observer, the observed, and the relationship between the two.
- So complexity and entropy are relative, but in an objective, clearly specified way.

- P. Grassberger. "Toward ^a Quantitative Theory of Self-Generated Complexity." Intl. J. Theo. Phys. 25:907. 1986.
- K.H. Knuth. "Optimal Data-Based Binning for Histograms." Pre-print. http://arxiv.org/abs/physics/0605197. 2006.
- D.W. McShea. "Complexity and evolution: what everybody knows." Biology and Philosophy 6:303-324. 1991.
- C.R. Shalizi. "Methods and Techniques of Complex Systems Science: An Overview." in Complex Systems Science in Biomedicine, T.E. Deisboeck, et al (eds.), Kluwer. 2004.

David P. Feldman

http://hornacek.coa.edu/dave

- W. Bialek, et al., "Predictability, Complexity, and Learning." Neural Computation, 13:2409. 2001
- J.P. Crutchfield, "Knowledge and Meaning ... Chaos and Complexity." In Modeling Complex Systems. L. Lam and H.C. Morris, eds. Springer-Verlag. 66-10. 1992.
- J.P. Crutchfield, "The Calculi of Emergence." *Physica D. 75*:11. 1994.
- J.P. Crutchfield and D.P. Feldman, "Regularities Unseen, Randomness Observed." Chaos. 15:23-54. 2003.
- D.P. Feldman and J.P. Crutchfield, "Measures of Statistical Complexity, Why?" Phys. Lett. A, 238:244. 1998.
- D.P. Feldman and J.P. Crutchfield, "Synchronizing to Periodicity." Advances in Complex Systems. 7:329-355. 2004.

David P. Feldman

http://hornacek.coa.edu/dave