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Overview and Motivation

Complex systems pose a challenge for mathematics and mathematical

sciences.

Can mathematics be used at all for such systems? Or are such systems
simply too complex to be simplified via mathematics?

Central premise: the abstractions of mathematics and mathematical models
can be used to gain qualitative insight into complex systems.

In my remarks | will focus on two questions:

1. What is complexity?

2. What does it mean to model?

| hope to convince you that the first question cannot be answered without

answering the second question.
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Why Complexity?

e Complexity is generally understood to be a measure of the difficulty of
describing a thing or a process.
e There are many different contexts in which the term complexity is used:

— Complexity as a measure of difficulty of learning a pattern (Bialek, et al,
2001)

— Biological and ecological systems exhibit different levels of complexity and

organization which we can study
— Complexity(?) in evolution (McShea, 1991)
— Complexity as measure of structure or pattern or correlation.

e | will focus on this last sort of complexity, but | think my general results extend

to other types of complexity.

Measurement and Modeling
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On the left is “nature.”

The act of measurement projects this system down to a lower dimension.
These measurements are discretized.

The measurements may then be encoded or corrupted by noise.

They then reach the observer on the right, who wishes to make inferences

about “nature””

Figure source: Crutchfield, 1992.
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Modeling and Inference Shannon Entropy
— | Any time we use a probability distribution, this indicates some uncertainty.
BMaC|  oo1011101000.. | B However, Some distributions indicate more uncertainty than others.
1 > =
A OO c qooorii1 The Shannon Entropy H is the measure of the uncertainty associated with
010 00

Iiot0i0L” a probability distribution:

System Process Observer

HX] = - Z Pr(z)log, Pr(z) . (1)
e In very idealized form, the observer is faced with a long string of binary =

measurement data: L
e A Fair Coin: (Probability of heads = 3) has an unpredictability of 1.

-.01101011101010101110101101010111011101... e A Biased Coin: (Probability of heads = (0.9) has an unpredictability of 0.47.
e What can the observer infer from this? e A Perfectly Biased Coin: (Probability of heads = 1.0) has an unpredictability
of 0.00.
e The observer can determine the frequency (or probability) of occurrence of . o i
The conditional entropy is defi ned via:
different sequences of 0's and 1's.
HIX|Y] = =) Pr(z,y)log, Pr(aly) - @
e Information theory gives us a way to measure properties of the sequence. z
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Entropy Rate Excess Entropy

e The entropy rate h,, is defined via . ] .
Py B e The excess entropy E is defined as the total amount of randomness that is

Lhn;o H[SL|SL-1SL-2...50] . “explained away” by considering larger blocks of variables.

) ) ) e One can also show that E is equal to the mutual information between the
e |n words: the entropy rate is the average uncertainty of the next symbol, given
L “past” and the “future™
that an arbitrarily large number of symbols have already been seen.

e h,, is the irreducible randomness: the randomness that persists even after E=1(s;5)=H[S] - H[S | 5]
statistics over arbitrarily long sequences are taken into account. e E is thus the amount one half “remembers” about the other, the reduction in

N hu is a measure of unpredictability. uncertainty about the future given knowledge of the past.

e Equivalently, E is the “cost of amnesia:” how much more random the future

appears if all historical information is suddenly lost.
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Excess Entropy and Entropy Rate Summary Example I. Disorder as the Price of Ignorance

e Let us suppose that an observer seeks to estimate the entropy rate.

* Excess entropy F is a measure of complexity (order, pattern, regularity e To do so, it considers statistics over sequences of length L and then

correlation ... ) . . .
estimates h,, using an estimator that assumes E = 0.

e Entropy rate h, is a measure of unpredictability.
by " P y e Call this estimated entropy 1, (L). Then, the difference between the

o Both E and &, are well understood and have clear interpretations. estimate and the true hﬂ is (Proposition 13, Crutchfield and Feldman, 2003):
e For more, see, e.g., Grassberger 1986; Crutchfield and Feldman, 2003. E
h, (L) —h, = T (3)

e |'ll now consider 3 examples that illustrate some of the subtleties that are

associated with measuring h# and E. e In words: The system appears more random than it really is by an amount

that is directly proportional to the the complexity E.

e In other words: regularities (E) that are missed are converted into apparent
!/
randomness (h), (L) — hy).
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Example Il: A Randomness Puzzle Example Ill: Unpredictability due to Asynchrony
® Suppose we consider the binary expansion of 7r. Calculate its entropy rate e Imagine a strange island where the weather repeats itself every 5 days. It's
hu and we'll find that it's 1. rainy for two days, then sunny for three days.

e How can 7 be random? Isn’t there a simple, deterministic algorithm to Rain
calculate digits of 7? ° c
Yes. However, it is random if one uses histograms and builds up probabilities Rein

Sun

over sequences. e
This points out the model-sensitivity of both randomness and complexity. °

| Sun
Q B 1 ...001011101000... | & Sun
> »| £
A > C g 0001111
fiototor” e You arrive on this deserted island, ready to begin your vacation. But, you
P -
System rocess Observer don't know what day itis: {A, B,C, D, E}.
e Histograms are a type of model. See, e.g., Knuth 2006. e Eventually, however, you will figure it out.
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Example lll: Unpredictability due to Asynchrony

® Once you are synchronized—you know what day it is—the process is
perfectly predictable; hu =0.

o However, before you are synchronized, you are uncertain about the internal

state. This uncertainty decreases, until reaching zero at synchronization.

e Denote by 'H(L) the average state uncertainty after L. observations are

made.

e The total state uncertainty experienced while synchronizing is the Transient

Information T

T

> H(L). @
L=0
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Summary of Examples

e |n all cases choice of representation and the state of knowledge of the

observer influence the measurement of entropy or complexity.
1. Ignored complexity is converted to entropy.
2. T appears random.
3. A periodic sequence is unpredictable.
e Hence, statements about unpredictability or complexity are necessarily a

statement about the observer, the observed, and the relationship between the

two.

o So complexity and entropy are relative, but in an objective, clearly specified

way.
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Example lll: Unpredictability due to Asynchrony

e It turns out that different periodic sequences with the same P can have very
different T"s.

e For a given period P:

P
Tmax ~ 510g2P7 (5
and
1
Toin ~ 3 logg P, (6)
e E.g.,if P = 256, then
Thax ~ 1024 , and Ty, ~ 32 . (7

e For much more, see Feldman and Crutchfield 2004.
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Conclusion: Modeling Modeling

e | have aimed to present an abstraction of the modeling process itself.

o These examples provide a crisp setting in which one can explore trade-offs
between, say, the complexity of a model and the observed unpredictability of

the object under study.

e The choice of model can strongly influence the result yielded by the model.

This influence can be understood.

e The hope is these models of modeling can give us some general, qualitative
insight into modeling.

e In my view, to study complex systems we often need to refine existing
mathematical techniques and broaden our scope. However, we do not need a

new kind of science.
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