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Overview and Motivation

• Complex systems pose a challenge for mathematics and mathematical

sciences.

• Can mathematics be used at all for such systems? Or are such systems

simply too complex to be simplified via mathematics?

• Central premise: the abstractions of mathematics and mathematical models

can be used to gain qualitative insight into complex systems.

• In my remarks I will focus on two questions:

1. What is complexity?

2. What does it mean to model?

• I hope to convince you that the first question cannot be answered without

answering the second question.

David P. Feldman http://hornacek.coa.edu/dave

SHE Workshop, 19 October 2006: The Objective Relativity of Complexity and Entropy 3

Why Complexity?

• Complexity is generally understood to be a measure of the difficulty of

describing a thing or a process.

• There are many different contexts in which the term complexity is used:

– Complexity as a measure of difficulty of learning a pattern (Bialek, et al,

2001)

– Biological and ecological systems exhibit different levels of complexity and

organization which we can study

– Complexity(?) in evolution (McShea, 1991)

– Complexity as measure of structure or pattern or correlation.

• I will focus on this last sort of complexity, but I think my general results extend

to other types of complexity.
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Measurement and Modeling
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• On the left is “nature.”

• The act of measurement projects this system down to a lower dimension.

• These measurements are discretized.

• The measurements may then be encoded or corrupted by noise.

• They then reach the observer on the right, who wishes to make inferences

about “nature.”

• Figure source: Crutchfield, 1992.
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Modeling and Inference
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• In very idealized form, the observer is faced with a long string of binary

measurement data:

...01101011101010101110101101010111011101...

• What can the observer infer from this?

• The observer can determine the frequency (or probability) of occurrence of

different sequences of 0’s and 1’s.

• Information theory gives us a way to measure properties of the sequence.
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Shannon Entropy

Any time we use a probability distribution, this indicates some uncertainty.

However, Some distributions indicate more uncertainty than others.

The Shannon Entropy H is the measure of the uncertainty associated with

a probability distribution:

H[X] ≡ −
∑

x

Pr(x) log
2
Pr(x) . (1)

• A Fair Coin: (Probability of heads = 1

2
) has an unpredictability of 1.

• A Biased Coin: (Probability of heads = 0.9) has an unpredictability of 0.47.

• A Perfectly Biased Coin: (Probability of heads = 1.0) has an unpredictability

of 0.00.

The conditional entropy is defined via:

H[X|Y ] ≡ −
∑

x

Pr(x, y) log
2
Pr(x|y) . (2)
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Entropy Rate

• The entropy rate hµ is defined via

lim
L→∞

H[SL|SL−1SL−2 . . . S0] .

• In words: the entropy rate is the average uncertainty of the next symbol, given

that an arbitrarily large number of symbols have already been seen.

• hµ is the irreducible randomness: the randomness that persists even after

statistics over arbitrarily long sequences are taken into account.

• hµ is a measure of unpredictability.
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Excess Entropy

• The excess entropy E is defined as the total amount of randomness that is

“explained away” by considering larger blocks of variables.

• One can also show that E is equal to the mutual information between the

“past” and the “future”:

E = I(
→

S ;
←

S ) ≡ H[
→

S ] − H[
→

S |
←

S ] .

• E is thus the amount one half “remembers” about the other, the reduction in

uncertainty about the future given knowledge of the past.

• Equivalently, E is the “cost of amnesia:” how much more random the future

appears if all historical information is suddenly lost.
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Excess Entropy and Entropy Rate Summary

• Excess entropy E is a measure of complexity (order, pattern, regularity,

correlation ... )

• Entropy rate hµ is a measure of unpredictability.

• Both E and hµ are well understood and have clear interpretations.

• For more, see, e.g., Grassberger 1986; Crutchfield and Feldman, 2003.

• I’ll now consider 3 examples that illustrate some of the subtleties that are

associated with measuring hµ and E.
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Example I: Disorder as the Price of Ignorance

• Let us suppose that an observer seeks to estimate the entropy rate.

• To do so, it considers statistics over sequences of length L and then

estimates hµ using an estimator that assumes E = 0.

• Call this estimated entropy hµ
′(L). Then, the difference between the

estimate and the true hµ is (Proposition 13, Crutchfield and Feldman, 2003):

h′µ(L) − hµ =
E

L
. (3)

• In words: The system appears more random than it really is by an amount

that is directly proportional to the the complexity E.

• In other words: regularities (E) that are missed are converted into apparent

randomness (h′µ(L) − hµ).
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Example II: A Randomness Puzzle

• Suppose we consider the binary expansion of π. Calculate its entropy rate

hµ and we’ll find that it’s 1.

• How can π be random? Isn’t there a simple, deterministic algorithm to

calculate digits of π?

• Yes. However, it is random if one uses histograms and builds up probabilities

over sequences.

• This points out the model-sensitivity of both randomness and complexity.

0
1

1

1
0

...001011101000...

0
0
0

0
0
1

0
1
0

0
1
1

1
0
0

1
0
1

1
1
0

1
1
1

P
r(

s 
)3

ObserverSystem

A

B

C

Process

• Histograms are a type of model. See, e.g., Knuth 2006.
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Example III: Unpredictability due to Asynchrony

• Imagine a strange island where the weather repeats itself every 5 days. It’s

rainy for two days, then sunny for three days.

B

C

D

E

A
Rain

Rain

Sun

Sun

Sun

• You arrive on this deserted island, ready to begin your vacation. But, you

don’t know what day it is: {A, B, C, D, E}.

• Eventually, however, you will figure it out.
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Example III: Unpredictability due to Asynchrony

• Once you are synchronized—you know what day it is—the process is

perfectly predictable; hµ = 0.

• However, before you are synchronized, you are uncertain about the internal

state. This uncertainty decreases, until reaching zero at synchronization.

• Denote by H(L) the average state uncertainty after L observations are

made.

• The total state uncertainty experienced while synchronizing is the Transient

Information T:

T ≡

∞∑

L=0

H(L) . (4)
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Example III: Unpredictability due to Asynchrony

• It turns out that different periodic sequences with the same P can have very

different T’s.

• For a given period P :

Tmax ∼
P

2
log

2
P , (5)

and

Tmin ∼
1

2
log2

2
P , (6)

• E.g., if P = 256, then

Tmax ≈ 1024 , and Tmin ≈ 32 . (7)

• For much more, see Feldman and Crutchfield 2004.
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Summary of Examples

• In all cases choice of representation and the state of knowledge of the

observer influence the measurement of entropy or complexity.

1. Ignored complexity is converted to entropy.

2. π appears random.

3. A periodic sequence is unpredictable.

• Hence, statements about unpredictability or complexity are necessarily a

statement about the observer, the observed, and the relationship between the

two.

• So complexity and entropy are relative, but in an objective, clearly specified

way.
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Conclusion: Modeling Modeling

• I have aimed to present an abstraction of the modeling process itself.

• These examples provide a crisp setting in which one can explore trade-offs

between, say, the complexity of a model and the observed unpredictability of

the object under study.

• The choice of model can strongly influence the result yielded by the model.

This influence can be understood.

• The hope is these models of modeling can give us some general, qualitative

insight into modeling.

• In my view, to study complex systems we often need to refine existing

mathematical techniques and broaden our scope. However, we do not need a

new kind of science.
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