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Consider the following power series:
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We’ll denote the partial sums by:
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Note that Sy(x) is just a polynomial. E.g.,
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1. Compute a handful of partial sums for two different values of x:
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2. Do Sy(0.1) and Sx(2) appear to be converging?
3. Let’s check convergence using the ratio test. For what values of & does this series converge?

4. Instead of thinking of S(z) one point at a time, we can think of it as a function of x and
graph it. Make plots of Sy(x), Ss(x) and Sip(z).



Another Power Series

Consider the following power series:
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As before we’ll denote the partial sums by Sy (x). Note that Sy(z) is a polynomial. Write out the

first several partial sums as a function of x:

1. Let’s compute a handful of partial sums for two different values of z:
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2. Do Sy(0.1) and Sy(2) appear to be converging?

3. Check convergence using the ratio test. For what values of x does S(x) converge?

4. Instead of thinking of S(z) one point at a time, we can think of it as a function of z and
graph it. Make plots of Sy(x), Ss5(x) and Sio(z).



