next up previous
Next: About this document ...

Definite and Indefinite Integral Practice

  1. Do the following integrals
    \begin{displaymath}
\int \left( \frac{1}{x} + \frac{1}{x^2} \right) \, dx
\end{displaymath} (1)


    \begin{displaymath}
\int \pi x^3 \, dx
\end{displaymath} (2)


    \begin{displaymath}
\int ( 2 \cos x - 5 \sin x ) \, dx
\end{displaymath} (3)


    \begin{displaymath}
\int_0^5 \frac{x^3}{5} \, dx \\
\end{displaymath} (4)

  2. Do the following integral. Express your answer both symbolically and numerically.
    \begin{displaymath}
\int_2^3 \frac{1}{2x} \\
\end{displaymath} (5)

  3. Without actually doing the two integrals, which of the following is larger?


    \begin{displaymath}
\int_0^1 x^2 \, dx
\end{displaymath} (6)


    \begin{displaymath}
\int_0^1 x^3 \, dx \\
\end{displaymath} (7)

  4. Evaluate the two integrals above and confirm your suspicions.





Dave Feldman
2001-01-12