Class 26: Power Series
Calculus 11
College of the Atlantic. March 8, 2023

Consider the following power series:
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We'll denote the partial sums by:

Note that Sy(z) is just a polynomial. E.g.,
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1. Compute a handful of partial sums for two different values of x:
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2. Do Sy(0.1) and Sy(2) appear to be converging?

3. Let’s check convergence using the ratio test. For what values of x does this
series converge?

4. Instead of thinking of S(x) one point at a time, we can think of it as a function
of  and graph it. Make plots of Sy(z), S5(z) and Sip(z).



Another Power Series

Consider the following power series:
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As before we’ll denote the partial sums by Sy (z). Note that Sy(x) is a polynomial.
Write out the first several partial sums as a function of z:

So(z) = (5)
Si(z) = (6)
Sy(x) = (7)
Ss(x) = (8)

1. Let’s compute a handful of partial sums for two different values of x:
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2. Do Sy(0.1) and Sy(2) appear to be converging?

3. Check convergence using the ratio test. For what values of z does S(x)
converge?

4. Instead of thinking of S(x) one point at a time, we can think of it as a function
of z and graph it. Make plots of Sy(z), S5(z) and Sip(z).



