14.4–6: Gradient Vectors and Chain Rules Calculus III

College of the Atlantic. Winter 2016

- 1. Consider the function $T(x, y, z) = e^{-(x^2+y^2+z^2)}$.
 - (a) Determine the gradient vector for general x, y, z.
 - (b) Determine the gradient vector at the following points:
 - i. (0, 0, 0)ii. (1, 1, 1)iii. (1, 0, 0)
 - (c) What is the directional derivative of T in the $-\hat{z}$ direction at (1,0,0)?
 - (d) What is the overall "shape" of the gradient vector field? How is this consistent with the level surfaces for this function?
- 2. Consider $g(x) = \sin(x^3y^4)$. Calculate g_{xx} and g_{xy} .
- 3. Let $f(x) = x^2$.
 - (a) Estimate f'(3) using a difference quotient of $\Delta x = 0.1$.
 - (b) Determine f'(3) exactly.
- 4. For some unknown reason, a square room is slowly expanding. All of its walls are increasing at a rate of 0.2 meters/day. How fast is the area of the room increasing when the side of the room is 8 meters long?
- 5. Let $f(a, b) = a^2 b^3$. At a particular moment in time, a = 3 and b = 4. At this moment, a is increasing at a rate of 2 units per second, while b is decreasing at 3 units per second. How fast is the function changing at this moment?
- 6. Suppose that z is a function of x and y: z = f(x, y). And suppose that x and y are both functions of u and v: x = g(u, v) and y = h(u, v). How does z vary with u? To answer this question you will need to derive a new chain rule formula.

- 7. Let the temperature along a metal rod be given by H(x, t), where: H is measured in Celsius degrees; x, the distance from the left end of the rod, is measured in centimeters; and t in minutes. Interpret the following equations:
 - (a) H(50,3) = 123. (b) $H_t(50,3) = -2$.
 - (c) $H_x(50,3) = -0.2$.
 - (d) $H_{tx}(50,3) = 0.05.$
- 8. Let the temperature in a metal rod be given by the function $T(x,t) = 100e^{-t}\sin(\pi x)$, where t is measured in minutes and x in meters. The rod is one meter long. (So $0 \le x \le 1$.)
 - (a) Sketch T(x, 0) and T(x, 0.1).
 - (b) Using the two sketches you just drew, determine the signs of f_x , f_t , f_{xx} , and f_{xt} at x = 0.2.
 - (c) Using the two sketches you just drew, determine the signs of f_x , f_t , f_{xx} , and f_{xt} at x = 0.5.
 - (d) Using the two sketches you just drew, determine the signs of f_x , f_t , f_{xx} , and f_{xt} at x = 0.8.