20.3 and 20.4: Curl and Stokes' Theorem

Calculus III

College of the Atlantic. Winter 2016

- 1. Let $\vec{G} = 2y\hat{i} 2x\hat{j}$
 - (a) Sketch or describe the field.
 - (b) Calculate $\nabla \times \vec{G}$ and make a sketch of it.
 - (c) Use Stokes' Theorem to calculate $\int_C \vec{G} \cdot d\vec{r}$ where:
 - i. C is a circle parallel to the yz-plane of radius a, centered at the origin, oriented counter clockwise when viewed from the positive x axis.
 - ii. C is a circle parallel to the xy-plane of radius a, centered at a point on the z-axis, oriented counter clockwise when viewed from above.
- 2. Use Stokes's theorem to find the circulation of \vec{F} around the circle $x^2 + y^2 = 4$, z = 1, oriented counterclockwise when viewed from above, and where

$$\vec{F} = (z - 2y)\hat{i} + (3x - 4y)\hat{j} + (z + 3y)\hat{k}.$$
(1)

- 3. Use the divergence theorem to find the flux of \vec{F} , given above in Eq. (1), out of a sphere of radius 3 centered at the origin.
- 4. Let $\vec{F}(x, y, z)$ be a vector field and f(x, y, z) is a scalar function of three variables. Which of the following quantities are vectors and which are scalars. Which are not defined?
 - (a) div \vec{F}
 - (b) $\operatorname{curl} \vec{F}$
 - (c) div f
 - (d) $\operatorname{curl} f$
 - (e) ∇f
 - (f) $\nabla \vec{F}$
 - (g) $\nabla \times \vec{F}$
 - (h) $\nabla \cdot \vec{F}$
 - (i) $\nabla \cdot f$
 - (j) $\nabla \times f$
 - (k) $\nabla \cdot \nabla f$
 - (l) $\nabla \times \nabla f$
 - (m) $\nabla \cdot \nabla \times \vec{F}$