More Vectors

Let $\vec{v_1} = (1, 1, 0)$ and $\vec{v_2} = (1, 0, 1)$.

- 1. Compute the following
 - (a) $\vec{v_1} + \vec{v_2}$
 - (b) $3\vec{v_1}$
 - (c) $2\vec{v_1} 3\vec{v_2}$
- 2. Consider the set $V = \{ c_1 \vec{v_1} + c_2 \vec{v_2} | c_1, c_2 \in \mathbb{R} \}.$
 - (a) Is V a vector space?
 - (b) Geometrically, how would you describe this set?
 - (c) Can you find a vector $\vec{w} \in \mathbb{R}$ that is not in V?

Which of the following sets of vectors are linearly independent?

- 1. (1,0,0), (0,1,0), (0,0,1)
- 2. (1,1), (1,2)
- 3. (1,1), (1,2), (1,3)