Chapter 4.6

Linear Algebra with applications to differential equations College of the Atlantic. Winter 2019

- 1. (Re)introduce yourself to your partners and briefly talk about your least favorite foods.
- 2. Let $\vec{u} = (1, 2, 3)$ and $\vec{v} = (3, -1, 3)$. Calculate $\vec{u} \cdot \vec{v}$.
- 3. Let $\vec{u} = (1,2)$ and $\vec{v} = (-2,1)$. Calculate $\vec{u} \cdot \vec{v}$. What's going on?
- 4. Let $\vec{u} = (1, 2, 3, 2, 1)$ and $\vec{v} = (1, -1, 3, 2, 2)$. Calculate the angle between \vec{u} and \vec{v} .
- 5. Let $\vec{u} = (3,4)$. Calculate $\vec{u} \cdot \vec{v}$.

......

6. Consider the matrix A:

$$A = \begin{bmatrix} 5 & -6 \\ 2 & -2 \end{bmatrix} . \tag{1}$$

- (a) Let $\vec{u} = (3,3)$. Calculate $A\vec{u}$.
- (b) Let $\vec{u} = (2, -2)$. Calculate $A\vec{u}$.
- (c) Let $\vec{u} = (3, 2)$. Calculate $A\vec{u}$.
- (d) Let $\vec{u} = (6,4)$. Calculate $A\vec{u}$.
- (e) Let $\vec{u} = (4, 2)$. Calculate $A\vec{u}$.

.....

7. Find the eigenvalues and eigenvectors for the matrix A:

$$A = \begin{bmatrix} 5 & -2 \\ 3 & -2 \end{bmatrix}, \tag{2}$$