Introduction to EigenVectors

Linear Algebra College of the Atlantic

Consider the matrix

$$A = \begin{bmatrix} 7 & 6\\ 6 & -2 \end{bmatrix} \tag{1}$$

1. Is $\vec{v_1} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ an eigenvector of A? If so, what is the corresponding eigenvalue?

2. Is
$$\vec{v_2} = \begin{bmatrix} -1\\ 2 \end{bmatrix}$$
 an eigenvector of A? If so, what is the corresponding eigenvalue?

3. Is $\vec{v_3} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ an eigenvector of A? If so, what is the corresponding eigenvalue?

4. Now consider the matrix: Consider the matrix

$$B = \begin{bmatrix} 10 & 0\\ 0 & -5 \end{bmatrix}$$
(2)

In words, what does *B* do to $\vec{e_1} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$? What does *B* do to $\vec{e_2} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$?

- 5. What does the matrix A do to $\vec{v_1}$? What does A do to $\vec{v_2}$?
- 6. Do $\vec{v_1}$ and $\vec{v_2}$ form a basis for \mathbb{R}^2 .
- 7. Which equation would you rather solve: $A\vec{x} = \vec{b}$ or $B\vec{x} = \vec{b}$?