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1. A very brief history of networks research
2. Introduction to random graphs

3. Properties of random graphs
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The Beginning of Graph Theory

e Leonhard Euler wonders, can | walk through the city of Konigsberg and cross

each bridge once and only once?
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® Figure Source:
http://en.w ki pedi a. org/wi ki /| mage: Koni gsber g_bri dges. png.

e In 1736, Euler answers this question with a theorem.
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Eulerian paths

® Figure sources: htt p: // en. wi ki pedi a. org/ wi ki /|1 mage: 7_bri dges. svg

andhttp://en.w ki pedi a. org/w ki /| mage: Koni gsbur g_gr aph. svg.
e Euler recognized this as a graph problem, as shown above.

e He then proved the following general theorem: An Eulerian path exists on a

graph if and only if there are exactly zero or two nodes with odd degree.

e An Eulerian path is a path that uses each edge in the graph exactly once.
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Graph Theory

Euler's 1736 theorem is the first result in the field of graph theory.
Subsequently, there was a fair amount of work done in this area.

This sort of work is generally considered to belong to the branch of math

known as combinatorics.

This work was mostly confined to pure mathematics and, much later,

theoretical computer science.

In this line of work, graphs were generally viewed as fixed, static quantities.
They were not viewed as random variables, nor were the statistics of graphs

studied.

Wikipedia seems to have some good, thorough pages on graph theory and its

history.
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Random Graphs

Rapoport (1957) and Erdés and Rényi (1959) introduce random graph

models.

These are, in a sense, maximally random—Ilike flipping coins.

Erdés and Rényi rigorously prove a number of properties of random graphs.
These results are probabilistic in nature.

The basic form of this model is now known as the Erdés and Rényi model.
Much more about the E-R model later today.

In general, math for very ordered thing and totally disordered things is “easy.”
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Highly Schematic Picture of Order and Disorder

ORDER DISORDER

<

>
Crystal Structures Ideal Gases

Exact Symmetries Tossing Coins (IID Processe
Group Theory Unpredictability

Abstract Algebra Chaos, Mixing, etc.
Regular Graphs, Lattices Erdos—Renyi Model, Random Graj

e There are well understood mathematical techniques for studying the extremes
of order and disorder.

e Intermediate regions are harder. Often one starts at one extreme and then

perturbs or expands off that extreme to get approximate solutions.
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Networks and Graphs after Erd 0s and R ényi

A fair amount of work in sociology, social networks, economics, etc.
Also work on computer and technological networks, engineering, etc.

Then, in 1998, Duncan Watts and Steven Strogatz publish Collective
Dynamics of 'Small-world” networks, Nature 393:440-442.

This paper sparks a remarkable surge of interest in networks.
Watts and Strogatz’s paper has been cited over 6000 times.
In 1999, Barabasi and Albert (re)-discover power laws in networks.

Their paper, Emergence of Scaling in Random Networks, Science 286:509

has now been cited over 3000 times.
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Why this Sudden Surge in Networks Research?

In my opinion, this is due to a number of factors.
Electronic data became available that wasn’t available before.

Advances in computing power.

The idea of networks resonates with increased attention to connection, links,

globalization, etc.

Watts and Strogatz’s model was very elegant and simple mathematically, and

captured the imagination of a great many people.

Once physicists became aware of networks, it was quickly realized that they

were very well suited to a physics style of analysis.

Arguably, there wasn’t that much interesting and exciting going on in other

areas of physics.

Complex networks are a natural extension of chaos and complex systems,
areas that had attracted considerable attention in the 1980’s and 90’s.

(© David P. Feldman College of the Atlantic Fall 2008



Theory and Applications of Complex Networks

The Erd 6s R ényi Model

e The Model:

1. Start with /N nodes.

2. Connect each pair of nodes with probability p.
e Questions:

— Is the graph connected?

— What is the degree distribution?

— What is the size of the graph?

— What is the clustering coefficient?
e \Why might we care?

— In science, we frequently need to ask, Could this have happened
randomly, by chance?

— In order to answer this question, we need to know about random graphs.
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ER Analysis: Preliminaries

Suppose a coin comes up heads with probability p.
e P(HHHHH) = p°.
e P(HHHTT) = p>(1 — p)*.
e P(HTHHT) = p3(1 — p)*.

Probability P(3) that we get three heads out of five tosses:

P = (# of ways to get 3 heads) x p*(1 — p)* .

After some careful counting, we see that:

P = (10) x p*(1 — p)* .

What's the general formula?
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ER Analysis: Preliminaries

e How many ways can we choose k objects out of a total of /N ?

N\ N! .
k) k(N -k ©)

e So, if we toss a coin N times, the probability P (k) that we get k heads is:

P(k) = (]Z)pN(l —p)"7F, (4)

where p is the probability of heads.

e This is an extremely versatile result.

e Try typing “5 choose 2” into a google search.
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ER Analysis: Degree Distribution

How many links does a node have? Each node gets /N — 1 potential links,

and each chance yields a link with probability p.

Thus, the degree distribution P (k) is:

R A A

k

For large IV, this equation becomes well approximated by:

Zke—2

Where z = p(n — 1) is the mean degree.

This is known as the Poisson distribution. It arises in many different

applications, not just networks. More about its origins in a few week.
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Poisson Distribution Properties
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e Plot of Poisson Distribution P(x) = 45—

® Figure Source: htt p: // en. wi ki pedi a. org/ w ki /| nage:

Poi sson_di stri buti on_PM. png.
e Variance = Mean = .

e The distribution is discrete. It is only defined for integer k.
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ER Analysis: Degree Distribution Conclusion

e For an Erd 6s-R ényi Random Graph, the degree distribution is Poisson.

e The distribution P(k) decays extremely rapidly as k gets large—much faster

than exponential!
e This means that well connected nodes are astronomically unlikely.

e Example: If N = 100 and p=0.1, then A = 10 and
P(50) = 0.000000012.

e We will see that the degree distribution of empirical networks are very rarely

Poisson.
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ER Analysis: Clustering Coefficient

The cluster coefficient is the fraction of your friends that are friends.
Link probabilities in the ER model are independent.

Thus, the probability that your friends are friends is just p.

Hence, C = p.

Conclusion: Erd6s-R ényi graphs have small clustering coefficients.

Almost all real-world graphs have clustering coefficients larger than would be

expected for comparable ER graphs.
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ER Analysis: Characteristic Path Length

Let 2 = np be the average degree.
The number of nodes a distance d from any node is approximately z?.

How big must d be so that it includes all of the nodes in the graph? This value
of d is £, the characteristic path length:

~ logn logn

~logz  logp+logn

— /

Thus, ER graphs are “small-world,” since £ grows logarithmically with n.

Many real-world graphs have the small-world property.
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ER Analysis: Is the Graph Connected?

e Roughly speaking, the graph undergoes a phrase transition as p is increased

from being a collection of small connected fragments to a graph which has a

giant connected component.

e A giant connected component is a connected component that is proportional

to n in the large n limit.

e The critical parameter at which this occurs is, not surprisingly, z = 1.
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ER Analysis: Connectivity Phase Transition
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e Figure Source: M.E.J. Newman, The Structure and Function of Complex
Networks, SIAM Reviews, 45(2):167-256, 2003.
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Summary of Properties of Erd 0s-R ényi Model

e Degree distribution is Poisson
e \ery low clustering
e Highly connected, “Small-world”

e Connectivity properties change discontinuously
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Erd 0s-R ényi Model Conclusions

Simple, tractable model of random graphs
Not a realistic model, but a useful “straw man” or null model
Does capture the small-world feature common in real-world networks

Also has discontinuous changes, suggesting that other, more realistic models,

might also have sharp thresholds

Gives us intuition about what to expect from more complicated and realistic
models
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