Homework Assignment One

Complex Networks College of the Atlantic Fall 2008

Due Friday September 26, 2008.

Note: If you consult any books or web pages as you do these problems, that's fine, but please cite your sources.

- 1. This problem is designed to be straightforward practice calculating some key descriptive graph properties. For the graph in Fig. 1, determine the following:
 - (a) The adjacency matrix.
 - (b) Write the links down in list form.
 - (c) The degree k_i of each node.
 - (d) The average degree $\langle k \rangle$ for the entire graph.
 - (e) The degree distribution P(k).
 - (f) The diameter of the graph.
 - (g) The cluster coefficient C_i for each node.
 - (h) The average cluster coefficient C.
 - (i) The path length d_{ij} between nodes:
 - i. 1 and 3

 - ii. 2 and 8 iii. 2 and 4
 - iv. 6 and 1

Use the second definition for the cluster coefficient, $C_i^{(2)}$ from the class notes. In your responses, be sure to state clearly the definitions of all quantities you're calculating.

- 2. Consider a regular graph in which the nodes are arranged linearly and every node is connected to its nearest and next-nearest neighbors. Such a graph is illustrated in Fig. 2. Assume that the graph has 100 total nodes. Also, assume that the graph wraps around so that it looks like a big circle. I.e., node 100 is connected to node 1.
 - (a) Calculate the average cluster coefficient.

Figure 1: The network for problem 1.

- (b) Calculate the diameter.
- (c) Calculate the mean path length ℓ .
- (d) Calculate the average degree $\langle k \rangle$.

Figure 2: The network for problem 2.

- 3. Now consider again a graph of the form shown in Fig. 2. This time we'll consider a more general case. Let there be N total nodes in the graph.
 - (a) Calculate the average cluster coefficient.
 - (b) Calculate the diameter.
 - (c) Calculate the average degree $\langle k \rangle$.
 - (d) Calculate the mean path length ℓ .

- (e) Is this a small-world graph? Why or why not?
- 4. Consider a very simple graph: eleven nodes connected together in a ring. Every node is connected only to its two nearest neighbors.
 - (a) Calculate the mean distance ℓ between nodes.
 - (b) Now, imagine that one additional link is added to the network at random. I.e., a node is chosen at random, and then a different node is chosen at random, and a link is drawn between those two nodes. What is the expected value for ℓ now?
- 5. **Optional.** (Recommended if you want to gain insight into small-world phenomena, and/or want a moderately challenging math problem.) Repeat the above problem, but for a the general case—i.e. for a ring of N nodes. You may assume that N is odd if you want.
- 6. The number of roadkill found along 100 mile stretches of interstate highway is distributed according to a Poisson distribution with a mean of 2.5.
 - (a) What is the probability that there are 2 roadkill on a 100 mile segment of highway?
 - (b) What is the probability that there are 3 roadkill on a 100 mile segment of highway?
 - (c) What is the probability that there are 10 roadkill on a 100 mile segment of highway?
 - (d) What is the probability that there are 4, 5, or 6 roadkill on a 100 mile segment of highway?
- 7. Consider an Erdős-Rényi model with N = 100 and p = 0.05.
 - (a) What is the expected average degree?
 - (b) What is the probability that a node has degree 10?
- 8. **Optional.** Do this if you like probability and/or want to mess around with limits. In class I asserted that the binomial distribution is well approximated by the Poisson distribution:

$$\binom{n}{k} p^k (1-p)^{n-k} \approx \frac{z^k e^{-z}}{k!} \,, \tag{1}$$

where $z \equiv p(n-1)$. Show that Eq. (1) is true in limit of large n and fixed k. This is a standard but difficult calculation. It's not specific to random graphs but is a general result from probability theory. To show this you'll probably need to consult other references. If you do so, be sure to cite your sources and explain your method thoroughly.