
Theory and Applications of Complex Networks 1

Theory and Applications of Complex Networks

Class Two

College of the Atlantic

David P. Feldman

12 September 2008

http://hornacek.coa.edu/dave/

1. Representing networks

2. Variations on networks

3. Basic structural properties of networks

c© David P. Feldman College of the Atlantic Fall 2008



Theory and Applications of Complex Networks 2

What is a Network?

1. A collection of nodes

2. A collection of edges connecting nodes

• Let N = number of nodes.

• Let M = number of links or edges.

• Networks are also knows as graphs, particularly among mathematicians.
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Network Representation: Adjacency Matrix
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• Adjacency matrix A: Aij = 1 if there is a link between nodes i and j.

Otherwise Aij = 0.

• For the graph shown above:

A =



















0 1 0 0 1 0

1 0 1 1 1 0

0 1 0 1 0 0

0 1 1 0 1 0

1 1 0 1 0 1

0 0 0 0 1 0



















(1)

• Note that A is symmetric
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Adjacency Matrix vs. Lists
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• For the networks we will consider the adjacency matrix is usually sparse. I.e.,

it has lots of zeros.

• This means that it is an inefficient representation because we waste memory

keeping track of a vast number of zeros.

• An alternative is to simply list the links by referring to the nodes they connect

• Ex: (1, 2), (1, 5), (2, 3), (2, 4), (2, 5), (3, 4), (4, 5), (5, 6).
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Variation: Directed Network
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• Links have direction. Adjacency matrix is no longer symmetric.
•

A =



















0 0 0 0 1 0

1 0 1 0 1 0

0 1 0 1 0 0

0 1 0 0 1 0

0 0 0 0 0 0

0 0 0 0 1 0



















(2)
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Variation: Weighted Network
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• Links have weights, indicating differint strengths of connection. Adjacency

matrix is no longer all 1’s and 0’s
•

A =



















0 6 0 0 3 0

6 0 1 1 1 0

0 1 0 3 0 0

0 1 3 0 2 0

1 3 0 2 0 4

0 0 0 0 4 0



















(3)
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Variation: Heterogenous Networks

• These are networks where there are different kinds of nodes and/or different

kinds of links.

• One common example is a graph in which there are two types of nodes,

where nodes can only be connected to nodes of the other type.

• These types of networks are known as bipartite graphs.

• Example: A network of senators and corporations, where corporations are

connected to senators via donations.
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Basic Network Properties

• Given a network, what are some useful ways of describing its connectivity,

organization, structure, etc?

• Today, some basic and (mostly) quite standard definitions.

• I will focus on regular networks, but most of the quantities generalize fairly

naturally to directed and/or weighted networks.

• You should be aware that there is not yet a common set of notation for most of

these quantities. Different authors and different communities use different

conventions.
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Basic Network Properties: Degree
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• The degree k of a node is the number of links connected to it.

• The degree is sometimes called coordination number and denoted with z.

This is mostly a physics convention.

• Ex: k1 = 2, k2 = 4, k6 = 1.

• Often we are interested in the average degree of all the nodes.

• This is often denoted k or 〈k〉. The latter is called “the expectation value of k.”

• For this graph, k = 2.67.

• There is a hard and an easy way to calculate k.
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Basic Network Properties: Degree Distribution

• We are usually interested in more than just the average degree.

• Are some nodes more connected than others? How much variance is there

about the mean degree?

• For that matter, is the notion of an average degree or variance even

meaningful?

• These questions can be addressed by looking at the degree distribution.

• P (k) is the probability that a randomly chosen node has degree k.
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Basic Network Properties: Degree Distribution
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• There is one node with degree 1, two nodes with degree 2, one node with

degree 3, and two nodes with degree 4.

• This can be represented in the following histogram:

P(k)

k1 2 3 4

• Later in the course we will examine in considerable detail different function

forms for P (k) and what they tell us.
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Basic Network Properties: Distance and Diameter

• Distance dij between nodes i and j

• dij = # of links along shortest path connecting i and j.

• This is also denoted d(i, j) or δ(i, j).

• This is sometimes referred to as the geodesic distance.

• The shortest path is called a geodesic.

• The mean distance ℓ is the average of the dij ’s.

• Apparently there is not an entirely standard way to do this average;

sometimes the self-distances (dii = 0) are included and sometimes they are

not.

• For large networks it doesn’t matter too much.
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Basic Network Properties: Distance and Diameter

• ℓ may be thought of as a measure of the size of the network.

• The diameter d of a graph is defined to be the distance of the longest

geodesic.

• d = maxij dij .

• The diameter is another measure of the size of the network.

• A network is said to have the “small world” property if ℓ grows no faster than

the log of the number of nodes: ℓ ∼ log(N).

• More on small-world graphs later in the course.
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Network Properties: Clustering and Transitivity

• To what extent are your friends friends with each other?

• There are two clustering measures that quantify the tendence of friends to be

friends.

C

B A

???

• There are two common ways to measure clustering.

• The following discussion closely follows Newman, “Structure and Function of

Complex Networks,” 2003.
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Clustering and Transitivity: Method Two

• Consider a node i of degree k.

• Let ei denote the number of edges among i’s k neighbors.

• Max # of links that could exist among these k neighbors = 1
2k(k − 1).

• Think about this until it makes sense.

• The the cluster coefficient C
(2)
i for site i is:

C
(2)
i =

ei

1
2k(k − 1)

=
2ei

k(k − 1)
. (4)

• C
(2)
i = friends among i’s friends as a fraction of the total possible number of

friends among i’s friends.

• The average clustering coefficient is denoted C(2) and is defined in the

natural way.
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Clustering and Transitivity: Method Two: Example

i

C
(2)
i =

ei

1
2k(k − 1)

=
2ei

k(k − 1)
. (5)

• For node i, k = 4.

• ei = # of edges among i’s neighbors = 1. neighbors.

• Plugging in, we get

Ci(2) =
2 × 1

4 × 3
=

1

6
. (6)

• btw, the (2) upstairs on the C ’s references the fact that this is the second way of defining C .

This notation isn’t standard. Usually a paper only uses one of the two definitions for C and you

should be careful to make sure which one it’s using.
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Clustering and Transitivity: Method Two Alternative

i

• Here is another formula for C
(2)
i :

C
(2)
i =

# of triangles connected to vertex i

# of triples centered on i
. (7)

• For this example, we get C
(2)
i = 1

6 just like before.

• It might take a few moments of quiet contemplation to convince yourself that

these two formulae are equivalent.
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Clustering and Transitivity: Method One

i

• Here is an different definition for the cluster coefficient.

C(1) =
3 × # of triangles

# of connected triples
. (8)

• For this example, we get C(1) = 3×1
8 .

• Note that this is a property of the entire network, not a single node.

• C(1) = fraction of transitive triples.

• I believe that this definition is more common in sociology. The previous

definition is more common in physics.
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Network Properties: Which Nodes are the Most
Important?

• Which nodes are the most important in a network?

• What different roles might nodes play?

• How are these different roles distributed among the nodes?

• Measures of importance of a node are often called centrality.

• There are several different notions of centrality. Some of the following

definitions are more standard than others.

• The following several slides follows Mason and Verwoerd, section four.
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Network Properties: Degree Centrality

• Key Idea: An important node is involved in many interactions.

• The degree centrality of a node is simply its degree.

• Thus, under this line of reasoning, the most important node is the one with

the most connections.
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Network Properties: Closeness Centrality

• Key Idea: An important node is close to lots of other nodes.

• The excentricity of node j:

Ce(j) = max
i

dij . (9)

• I.e., Ce(j) is the distance from j to the node that is furthest away from j.

• Another interesting notion is the center of the graph. This is given by the set

of points that are closest to everybody else:

C = {i : Ce(i) = min
j

Ce(j)} . (10)

• The above equation just says that the center is the middle of the graph.
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Network Properties: Betweenness Centrality

• Key Idea: An important node connects lots of other nodes. I.e., an important

node will be on a high proportion of paths between other nodes.

• To calculate Cb(i), the betweenness centrality for node i:

1. Consider all pairs of nodes j, k 6= i.

2. Determine the shortest path between all such j, k.

3. Then Cb(i) = fraction of those paths which go through i.
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Network Properties: Eigenvalue Centrality

• Key Idea: An important nodes are connected to many other important nodes

• Details later in the course.
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