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1. A Statistical Tangent

2. Recap of Erdős-Rényi model

3. Description of Small-World model

4. Properties of the Small-World model
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Null Models and p-values

• At a certain school, two thirds of the students are women.

• A certain class of 8 students has 7 women in it.

• Is this unusual?

• Or is this something that could happen by chance?

• Null Hypothesis: Men and women are equally likely to take the class.

• Alternative Hypothesis: Men and women are not equally likely to take the

class.
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Can we Reject the Null?

• Under the null hypothesis, the probability that there are k women in a class of

N is given by:

P (k) =
(

n

k

)
pk(1− p)n−k . (1)

• For N = 8, how likely is it that there are 7 or more women in the class?

P (k ≥ 7) = P (7) + P (8) = 0.1561 + 0.039 = 0.1952 . (2)

• The quantity 0.1562 is known as the p-value.

• The p-value is defined to be the probability that the null model would generate

a result at least as extreme as the one which was actually observed.

• The experimenter sets a significance level α, often 5%.

• In this case, there is not significant evidence to reject the null.

• The smaler the p-value, the more evidence there is against the null.
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Calculating p-values

• Three options:

1. Look them up in a table

2. Calculate by hand

3. Simulate

• I wrote a short program to simulate choosing 8 students where each student

is female with probability 2
3 .

• Running the simulation 10,000 times I get p = 0.1873.

• Running the simulation 100,000 times I get p = 0.19622.
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The Erd ős Rényi Model

1. Start with N nodes.

2. Connect each pair of nodes with probability p.

• The mean degree is z = Np

• Note that there are a number of different ways to consider the large N limit.

• Often, we want N to get large while keeping z constant.

• In science, we frequently need to ask, Could this have happened randomly, by

chance?

• In order to answer this question, we need to know about random graphs.
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Summary of Properties of Erd ős-Rényi Model

• Degree distribution is Poisson:

P (k) =
zke−z

k!
. (3)

• Very low clustering:

C =
z

N
. (4)

• Highly connected, “Small-world”:

ℓ ≈ log N . (5)

• Connectivity properties change discontinuously as p is varied.
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The Small-World Model

• The model:

1. Begin with a regular lattice. Usually this is a one-dimensional ring, where

each node has a few neighbors.

2. Go through the regular lattice and consider each link.

3. With probability p, rewire the link by random rewiring

• Initial question:

1. How do C and ℓ vary with p?

• Watts and Strogatz, Nature 393:440–2. 1998.

• See also Newman, Models of the Small World,” Journal of Statistical Physics

101:819-841. 2000.
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Watts-Strogatz Model

• As p is increased the model moves from a regular graph, through

intermediate graphs, to a random graph at p = 1.

• Figure source http://www.nature.com/nature/journal/v393/n6684/

fig_tab/393440a0_F1.html
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Watts-Strogatz Model: Basic Results

• There is a large intermediate region which shows “small-world” behavior:

small ℓ but large C .

• Note the log scale on the horizontal axis.

• Figure source http://www.nature.com/nature/journal/v393/n6684/

fig_tab/393440a0_F2.html
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Watts-Strogatz: Preliminary Conclusions

1. The WS model shows a transition from a large-world to a small-world.

2. Disease models which have a non-automated susceptibility to infection exhibit

a sharp transition between epidemic and non-epidemic behavior.

3. Dynamical systems on small-world graphs exhibit behavior which is

qualitatively different from behavior on regular graphs.

4. Many graphs show additional features (e.g., long-tailed degree distributions)

which are not accounted for by the WS and similar models.

5. Nevertheless, the WS model qualitatively captures the small-world feature of

many networks, and is a useful, albeit quite basic, model for a social network.

• Adapted from conclusions in Newman’s 2003 review article.
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Questions

• How do small-world networks grow?

• What sort of models might give us insight into networks in which the degree

distribution is long-tailed?

• When are small-world networks navigable with local information?

• How does the behavior of dynamical systems (e.g., epidemic models or

scheduling problems) change as network topology changes?

• How robust are results based on the WS model?
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