Chapter C2: MDI Vectors

September 12, 2011

Consider the following vectors:

- \vec{a} = the displacement from COA to the Bar Harbor airport.
- \vec{b} = the displacement from MDI High School to Thunder Hole.
- \vec{c} = the displacement from Somesville to The Jackson Lab.
- 1. Specify vectors $\vec{a}, \vec{b}, \vec{c}$ by giving their magnitude and direction. Use units of centimeters.
- 2. On a separate sheet of paper, draw (to scale) the following:
 - (a) $\vec{a} + \vec{b}$
 - (b) $\vec{b} + \vec{a}$
 - (c) $\vec{c} \vec{a}$
- 3. Using your ruler and protractor, determine the magnitude and direction of three vectors you drew for the previous problem.
- 4. Specify vectors $\vec{a}, \vec{b}, \vec{c}$ by giving their components. Use a ruler. Do not use trigonometry.
- 5. Give the components of the following:
 - (a) $\vec{a} + \vec{b}$ (b) $\vec{c} - \vec{a}$
- 6. On a separate sheet of paper draw (to scale) the following:
 - (a) $2\vec{a}$
 - (b) $1.5\vec{b}$
- 7. Give the magnitude, direction, and components, of two vectors you drew for the previous problem.

More Vector Practice

- 1. A displacement vector \vec{A} has an *x*-component of 3 meters and a *y*-component of 2 meters. What is the magnitude and direction of \vec{A} ?
- 2. A displacement vector \vec{B} has a magnitude of 7 meters and a direction that is 37 degrees south of west. Find the component of \vec{B} .
- 3. Calculate $\vec{A} + \vec{B}$. Express you answer both in components and by giving the vector's magnitude and direction.