Chapter C12: Power!

C12.1: Power

Power in physics is defined as rate of energy transfer—energy per time.

$$Power \equiv \frac{|\Delta Energy|}{\Delta time} . \tag{1}$$

The unit of power is the *Watt*;

$$1Watt \equiv 1J/s \tag{2}$$

Power companies measure energy in units of kilowatt hours

$$1kWh = 3.6MJ. (3)$$

Examples:

- 1. You put 100 grams of ice in one kilogram of pure alcohol. What is the final temperature of the mixture? Assume that the ice is -10 when it is placed in the alcohol and that the alcohol is at 25 degrees before it is cooled down.
- 2. You need a heater that can raise the temperature of water 30° C in 15 minutes. What power must the heater be capable of delivering?
- 3. How much does it cost in Maine to run a toaster for 5 minutes?

Some handy info

• Conversion Factors:

$$1kWh = 3.6 MJ. (4)$$

$$746 \text{ Watts} = 1 \text{ horsepower}$$
 (5)

- An electric dryer draws around 3 kilowatts.
- A hair dryer draws around 1500 Watts.
- A toaster draws around 1000 Watts.
- A kWh of electrical energy costs \$0.17 in Maine.
- A typical Maine home uses around 400 kWh of electricity a month.
- A typical solar cell in Maine can generate around 10W of electrical power per square meter of solar cell.

Practice

- 1. What is the minimum cost of bringing 1 kettle of cold tap water to a boil?
- 2. A small motor is used to power a lift that raises a 50 kg crate of tofu to a height of 5 meters in 10 seconds. What is the minimum power that the motor must provide?
- 3. A 55 kg person bikes up Cadillac mountain in 20 minutes. What is the minimum power they must exert? Express you answer in Watts and horsepower.
- 4. A one-foot length of pipe with a radius of 1 cm freezes in your basement. You plan on melting the ice in the pipe by heating it with a hair dryer. What is the minimum amount of time it will take to melt the ice?
- 5. You prop open the door of your refrigerator. Will the room get cold, get hot, or stay the same temperature?
- 6. A 1000 kg car drives up a 10 % incline at 20 m/s. (A 10 percent grade means that for every 10 meter traveled horizontally the gain in elevation is 1 meter.) What is the minimum horsepower needed for the car to do this, given that the car is about 15 % efficient?
- 7. What power is needed for a typical Maine home. (To calculate this, assume that the home draws energy at an equal rate all month.)
- 8. What area of solar cells would be needed to provide enough energy for a typical Maine home?
- 9. Estimate how much it costs to heat the water for a typical shower, assuming that you have an electric hot water heater. Assuming you shower daily, how much would this cost per month?

C13.2: Cross Product

The cross product is, like the dot product, a way to "multiply" two vectors together. The dot product takes two vectors and turns them into a scalar. The cross product takes two vectors and returns another vector.

$$mag(\vec{u} \times \vec{w}) = uw \sin \theta \tag{6}$$

The direction of $\vec{u} \times \vec{w}$ is perpendicular to the plane that contains \vec{u} and \vec{w} and is given by the right hand rule.

In components:

$$\vec{u} \times \vec{w} \equiv \begin{bmatrix} u_y w_z - u_z w_y \\ u_z w_x - u_x w_z \\ u_x w_y - u_y w_x \end{bmatrix}$$
 (7)

We won't use this equation explicitly, but it is perhaps comforting to know that it exists.

Note that $\vec{u} \times \vec{v} = -\vec{v} \times \vec{u}$.

Examples

- 1. Let \vec{u} be a displacement vector of 2 meters that points due east, and let \vec{w} be a vector with a magnitude of 3 meters that points due south.
 - (a) Find $\vec{u} \times \vec{w}$.
 - (b) Find $\vec{u} \cdot \vec{w}$.
 - (c) Find $\vec{u} \cdot \vec{u}$.
 - (d) Find $\vec{u} \times \vec{u}$.
- 2. Let \vec{v}_1 be a displacement vector of 3 meters that points due east, and let \vec{v}_2 be a vector with a magnitude of 2 meters that points 45 degrees north of west.
 - (a) Find $\vec{v}_1 \times \vec{v}_2$.
 - (b) Find $\vec{v}_1 \cdot \vec{v}_2$.
- 3. Let \vec{a} be a displacement vector of 3 meters that points due east, and let \vec{b} be a vector with a magnitude of 2 meters that points due west.
 - (a) Find $\vec{a} \times \vec{b}$.
 - (b) Find $\vec{a} \cdot \vec{b}$.