Physics III Homework Five

Due Friday 27 May, 2007.

Consider the following complex numbers:

$$egin{array}{rcl} z_1 &=& 1-i \ , \ z_2 &=& -2 \ , \ z_3 &=& 3i \ . \end{array}$$

- 1. Compute the following:
 - (a) $z_1 + z_2$ (b) $z_1 z_2$ (c) $z_2 - z_3$ (d) z_1^2 (e) $z_3 z_1$

2. Convert the following into polar form:

- (a) z_1
- (b) z_2
- (c) z_3
- 3. Consider the following complex numbers:

$$z_4 = 2e^{i\pi},$$

 $z_5 = e^{i\frac{\pi}{2}},$

- (a) Convert z_4 to regular (non-polar) form
- (b) Convert z_5 to regular (non-polar) form
- (c) Calculate $z_4^* z_4$
- (d) Calculate $z_5^* z_5$

- 4. **Optional:** Use complex exponentials to derive formuae for $\cos(3x)$ and $\sin(3x)$.
- 5. (Optional) (from p. 369 of Arfkin and Weber, Mathematical Methods for Physicists, fourth edition, Academic Press, 1995.) Prove that:

(a)

$$\sum_{n=0}^{N-1} \cos nx = \frac{\sin N(x/2)}{\sin x/2} \cos(N-1)\frac{x}{2} , \qquad (1)$$

and

(b)

$$\sum_{n=1}^{N-1} \sin nx = \frac{\sin N(x/2)}{\sin x/2} \sin (N-1)\frac{x}{2}.$$
 (2)

Apparently these sum are used in the analysis of multiple-slit diffraction patterns.

To do this, you'll then need to use the following result about geometric series:

$$\sum_{n=1}^{\infty} a r^{n-1} = \frac{a}{1-r} , \qquad (3)$$

for -1 < r < 1.