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Chapter 19

Complex Numbers

In order to work our way to the Mandelbrot set, we’ll need to put Julia
sets aside for a moment and focus on complex numbers. In the subsequent
chapter we will consider dynamical systems where the numbers we iterate are
complex. Thus far, we’ve been iterating only real numbers. Iterating simple
functions but with complex numbers will then lead us quickly to the Julia
and Mandlebrot sets.

19.1 The Square Root of Negative One

What is the square root of negative one? That is, is there any x such that

x2 = −1 ? (19.1)

The answer to this equation can’t be x = 1, since 12 = 1. And the answer
also isn’t −1, since (−1)2 = (−1)(−1) = 1. So we’re stuck. The way to get
out of this bind is to simply define a new number. We’ll call this new number
i, and it is defined by the fact that i squared is negative one:

i2 = −1 . (19.2)

Equivalently, this says that i is the square root of negative one:

i =
√
−1 . (19.3)

The number i is often referred to as an imaginary number. However, the
term complex number is more commonly used, at least in mathematics
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circles, for numbers of this sort. Real numbers are those numbers that are
not complex. Thus far we’ve been working exclusively with real numbers.
The number line, stretching from minus infinity to positive infinity, contains
all the real numbers. Integers are a subset of the real numbers.

I think that the word “imaginary” carries some metaphysical or cosmic
baggage that isn’t helpful. After all, all numbers are imaginary—they’re con-
structs and idealizations of ideas in people’s heads. Numbers aren’t tangible
things that you can bump into in the physical world like a tree or a rock or a
table. In the world there might be seven rocks or seven trees or seven tables.
But this is different than the pure number seven. You can find seven things,
but this isn’t the same as finding seven. So I’d say that, in some sense, the
number seven is “imaginary,” in much the same way that the number i is
imaginary.

But you might be wondering if there are any physical manifestations of i.
We could find seven rabbits. Could we ever find i rabbits? The answer to this
question is no, at least as far as the rabbits are concerned. However, there are
physical phenomena that are commonly described by complex numbers. One
example is alternating current (AC) circuits. Determining the behavior of
AC circuits with resistors, capacitors, and inductors is very commonly done
with complex numbers. And the theory of quantum mechanics also makes
extensive use of complex numbers.

In any event, I’ll typically use z to refer to a complex number. (This
is standard, but not universal. Many authors use x or some other letter.)
A generic complex number is a combination of real numbers and imaginary
numbers of the following form:

z = a + bi , (19.4)

where a and b are real numbers. For example, we might have:

z = 3 + 4i . (19.5)

The numbers a and b in Eq. (19.4) are referred to as, respectively, the real
part and the imaginary part of z. The real part of z is sometimes denoted
<(z), and the imaginary part is denoted =(z). I won’t use these notations
in this book, but it’s possible that you encounter them elsewhere.

Note that the imaginary part of z is not imaginary. I.e., the imaginary
part of z = 3 + 4i is 4. We would not say that the imaginary part is 4i.
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19.2 The Algebra of Complex Numbers

We now consider performing basic mathematical operations with complex
numbers: addition, subtraction, and multiplication. The two keys are to
treat i as if it were a separate algebraic variable, and to make use of the fact
that i2 = −1.

19.2.1 Addition and Subtraction

To add two complex numbers, one adds their real and imaginary parts sep-
arately. For example, let

z1 = a + bi , (19.6)

and
z2 = c + di . (19.7)

Then
z1 + z2 = (a + bi) + (c + di) = (a + c) + (b + d)i . (19.8)

So the real part of z1 + z2 is just the sum of the real parts of z1 and z2, and
similarly for the imaginary parts.

19.2.2 Multiplication

To multiply two complex numbers one multiplies the two numbers together
as you would for binomials,1 and then simplifies using the fact that i2 = −1.
Suppose we want to multiply together z1 and z2, given above in Eqs. (19.6)
and (19.7):

z1z2 = (a + bi)(c + di) (19.9)

= ac + adi + bci + bdi2 (19.10)

= ac + (ad + bc)i + bdi2 (19.11)

= ac + (ad + bc)i− bd (19.12)

= (ac− bd) + (ad + bc)i . (19.13)

Note that in Eq. (19.12) I’ve used the fact that i2 = −1.

1You might have learned this process as FOILing. “FOIL” is a mnemonic device for
accounting for the four terms that arise when multiplying binomials: Firsts, Outers, Inner,
Lasts.
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Let’s consider a numerical example. Suppose we want to multiply to-
gether the numbers 4 + 3i and 2− 3i:

(4 + 3i)× (2− 3i) = 8 + (3i)(−3i) + 4(−3i) + (3i)(2) (19.14)

= 8− 9i2 − 12i + 6i (19.15)

= 8− 9(−1)− 6i (19.16)

= 17− 6i . (19.17)

19.3 The Geometry of Complex Numbers

The real number line is a useful way of representing and visualizing the set
of real numbers. We’ve made us of this when drawing phase portraits in
previous chapters. There is a similar geometric way of visualizing complex
numbers: the complex plane. The complex plane is a natural generaliza-
tion of the real number line. We plot the real part of a complex number on
the horizontal axis and the imaginary part on the vertical axis.

This is illustrated in Fig. 19.1. There are four numbers plotted in this
figure, each is shown with a different shape. The circle is 2+2i, the triangle is
1
2
− 3

2
i, the square is−i, and the diamond is−2.5. I’d suggest taking a moment

to examine Fig. 19.1 to make sure that you see the connection between the
real and imaginary parts of a complex number and its representation on the
complex plane.

There is another way of indicating the location of complex numbers on a
plane. Rather than specifying a number’s real and imaginary parts, a and
b, we specify how far the point is from the origin, and the angle between
the horizontal axis and a line drawn from the origin to the point z. This is
illustrated in Fig. 19.2. In the figure the complex number z = a+bi is plotted
as a small circle. The distance from the origin to the point is denoted r. The
angle θ is the angle between the horizontal axis and the line from the origin
to the point. So, we can specify the complex number by giving the real and
imaginary parts, a and b, or by giving its r and θ values. The a, b form is
known as Cartesian coordinates; the r, θ form is known as polar coordinates.
Both forms are equivalent; they’re simply different representations of the
same number. Which form we use will depend on the situation; in some cases
Cartesian coordinates are easiest, while in other cases polar coordinates are
more convenient.
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Figure 19.1: The complex plane. Four numbers are plotted: 2 + 2i (circle);
1
2
− 3

2
i (triangle): −2.5 (diamond); and −i (square).

r

θ
a

b

z = a+bi

Figure 19.2: Illustrating polar notation for points z = a + bi on the complex
plane.
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One can come up with equations that relate the two different forms for
a complex number. For example, suppose we know a and b in Fig. 19.2 and
we want to figure out r. Notice that the lengths a, b, r form a right triangle,
with r the hypotenuse. Thus, by the Pythagorean theorem:

r2 = a2 + b2 . (19.18)

Solving for r, we get:
r =

√
a2 + b2 . (19.19)

We will use this equation often.
As an example, consider the point shown as a circle on Fig. 19.1. This

point is 2 + 2i, so a and b are both 2. Thus, the r for this point is

r =
√

22 + 22 =
√

8 ≈ 2.83 . (19.20)

Geometrically, this means that the pointed indicated by the circle is around
2.83 units away from the origin. The θ for this point is 45 degrees. To see
this, draw a line from the origin to the point. The angle can then be seen to
45.

If one knows a and b one can also determine the angle θ. To do so requires
trigonometry. The resulting formula is:

θ = tan−1(
b

a
) . (19.21)

We won’t use this equation much, if at all, in this version of the book.
However, I include it here for the sake of completeness.

Finally, one can also use trigonometry to go from r and θ to a and b. The
formulas are:

a = r cos θ , (19.22)

b = r sin θ . (19.23)

We won’t use these equations in this version of the book, but it’s good to
know that the exist.

19.4 The Geometry of Multiplication

Polar coordinates are particularly helpful when we are multiplying two com-
plex numbers. We shall see that multiplication has a particularly simple
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interpretation in polar coordinates. To do so, let’s consider a series of exam-
ples. Our goal will be to use these examples to come up with a rule that will
let us perform multiplication using polar coordinates instead of Cartesian.

z_1

z_2

z_3

Figure 19.3: Illustrating multiplication; z1 = 3, z2 = 2i, and z3 = z1z2 = 6i.

First, let
z1 = 3 , (19.24)

and
z2 = 2i . (19.25)

These two numbers are shown on the complex plane in Fig. 19.3. Note that
for z1, r = 3 and θ = 0, while for z2, r = 2 and θ = 90 degrees. Let’s multiply
these two numbers together and call this new number z3:

z3 = z1z2 = 3× 2i = 6i . (19.26)

The number z3 is also shown in Fig. 19.3. In polar coordinates, z3 is given
by r = 6 and θ = 90. Note that the r for z3 is just the r for z1 times the r
for z2. And the θ for z3 is the same as the θ for z2.

For our next example, consider the following two numbers

w1 = 2 + 2i , (19.27)

and
w2 = −1 + i . (19.28)

(I’m using w for complex numbers here to distinguish them from the z’s of
the previous example.) These numbers are shown in Fig. 19.4. Note that for
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w_2 w_1

w_3

Figure 19.4: Illustrating multiplication; w1 = 2+2i, w2 = −1+i, and w3 = 4.

w1, r1 =
√

8 ≈ 2.83 and θ1 = 45 degrees. To determine r, I used Eq. (19.19).
And for w2, r2 =

√
2 ≈ 1.41 and θ2 = 135 degrees.

Let’s multiply these two numbers together and see what happens:

w3 = w1w2 = (2+2i)(−1+i) = −2+2i−2i+2i2 = −2−2 = −4 . (19.29)

Note that in polar coordinates, w3 has r3 = 4 and θ3 = 180. As was the
case in the previous example, the r for w3 is equal to the r’s for w1 and w2

multiplied together:

r3 = r1r2 =
√

8
√

2 =
√

16 = 4 . (19.30)

And the θ’s get added:

θ3 = θ1 + θ2 = 45 + 135 = 180 . (19.31)

This is a general result. To multiply two complex numbers, multiply their

r’s and add their θ’s. This result gives us a way to multiply complex numbers
that is often faster than using Cartesian coordinates. More important, it
gives us a geometric way of “seeing” what the effects of multiplication are.
Practicing multiplying and plotting complex numbers in the problems below
should help to generate some intuition about the effects of multiplication.

Finally, note that the above result for multiplying in polar coordinates
leads to a simple view of squaring complex numbers. Squaring just means
multiplying a number by itself:

z2 = zz . (19.32)
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Thus, to square a complex number, all one has to do is square the r value
and double the θ value. For example, suppose z = 1 + i, so r =

√
2 and

θ = 45. Then, z2 has an r of (
√

2) = 2 and a θ of 90. A θ of 90 indicates
that the point is located “straight up.” That is, the point is on the vertical
(imaginary) axis. So it must be that z2 = 2i.

1

1
z

z^2

w

w^2

Figure 19.5: Illustrating squaring complex numbers; z = 1 + i, z2 = 2i,
w = 1

2
+ 1

2
i, w3 = 4.

We can verify this result by using Cartesian coordinates:

z2 = (1 + i)2 = (1 + i)(1 + i) = 1 + i + i + i2 = 1 + 2i− 1 = 2i , (19.33)

which is the same as our result obtained via Cartesian coordinates.
Squaring z is illustrated in Fig. 19.5, where I’ve plotted z and z2 on the

complex plane. Note that we can see that the r for z2 is equal to the square
of the r of z, and that the θ for z2 is twice that of z.

Also on Fig. 19.5 I’ve shown w = − 1
2

+ 1
2
i and w2. The θ for w is 135,

while r is given by:

r =

√

(

1

2

)2

+

(

1

2

)2

=

√

1

4
+

1

4
=

√

2

4
=

1√
2
≈ 0.707 . (19.34)

Thus, w2 has an r given by the square of this amount. Namely, r = 1
√

2
2 = 1

2
.

Note that the r of w2 is less than the r of w. The θ for w2 is twice that of
w: namely, θ = 270. So, w2 has an r of 1

2
and a θ of 270. This is shown in

Fig. 19.5.
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19.5 Problems

For problems 1–4 let
z1 = 3 , (19.35)

z2 = 2− i , (19.36)

z3 = 4i , (19.37)

and
z4 = −2 + 3i . (19.38)

1. Calculate the following quantities:

(a) z1 + z2

(b) z1 + z3

(c) z1 + z4

2. Calculate the following quantities, and plot the two numbers and their
product on the complex plane.

(a) z1z2

(b) z4z2

(c) z2z4

3. Calculate the following quantities:

(a) 5z4

(b) z4 + 5

(c) (z3 − 1)(z1 = 2i)

(d) (z3 + z4)z2

4. Calculate the following quantities:

(a) z2
4

(b) z3
3

(c) z2
1

(d) z2
2
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5. Consider the function f(z) = z2. Calculate the first 3 iterates of

(a) z0 = 0

(b) z0 = i

(c) z0 = 2

-3

-2

-1

 0

 1

 2

 3

-3 -2 -1  0  1  2  3

Figure 19.6: Four complex numbers plotted on the complex plane. See ques-
tion 6.

6. Four complex numbers are shown on the complex plane in Fig. 19.6.
Determine the coordinates for each point, using both Cartesian and
polar coordinates.

7. (Important!) Consider the squaring function f(z) = z2. For each of
the initial conditions listed below, do the following.

• Convert to polar representation.

• Calculate the first several iterates.

• State what you think the long-term behavior of the orbit is

(a) z + 0 = i

(b) z + 0 = 1− i
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(c) z + 0 = 2 + i

(d) z + 0 = 2

(e) z + 0 = −1

(f) z + 0 = −1 + 2i

-3
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-1

 0

 1

 2

 3

-3 -2 -1  0  1  2  3

Figure 19.7: Four different initial conditions plotted on the complex plane.
See question 8.

8. In Fig. 19.7 are shown four different complex numbers. Use each as a
seed for the squaring function f(z) = z2. On the complex plane, sketch
the first three iterates for each seed. Perform the iteration using the
geometric view of squaring complex numbers.

9. What do you think the Julia set is for the function f(z) = z2, where
z is a complex number? That is, what initial conditions z0 have the
property that, when iterated by f , they do not fly off to infinity?

10. Consider the function f(z) = z2 − 1. Calculate the first 3 iterates of

(a) z0 = 0

(b) z0 = i

(c) z0 = 2
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11. Consider the function f(z) = z2 + i. Calculate the first 3 iterates of

(a) z0 = 0

(b) z0 = i

(c) z0 = 2


