
Homework assignment one

Due Friday September 13, 2002, 4:00 PM

1. Shannon Entropy.

(a) Consider two random variables, X and Y . Suppose that they are independent.
I.e., Pr(X, Y ) = Pr(X)Pr(y). Show that H[X, Y ] = H[X]H[Y ].

(b) Consider the following distribution of a random variable X that can take one of
three values, a, b, or c: Pr(X = a) = pa = 1/4, Pr(X = b) = pb = 1/4, and
Pr(X = c) = pc = 1/2. Show that the grouping property of H holds:

H[{pa, pb, pc}] = H[{pa + pb, pc}] + (pa + pb)H

[
{ pa
pa + pb

,
pb

pa + pb
}
]
. (1)

(c) A fair coin is flipped until the first head occurs. Let X denote the number of flips
required. Find the entropy H[X] in bits. Do do so, you’ll need to recall a few
standard facts about geometric series. (Cover and Thomas, Chapter 2, problem
1(a))

2. In this problem you will calculate the entropy per spin of a paramagnet several different
ways. Consider a square N ×N lattice. The spins don’t interact with each other, but
they do interact with an external field, B. The Hamiltonian of the system is:

H =
N∑
i=1

N∑
j=1

−BSij , (2)

where Sij ∈ {−1,+1}.

(a) First, calculate the entropy by using the canonical ensemble. Find the free energy
F and the energy E, and then determine the entropy S via F = E − TS.

(b) Now, use the canonical ensemble to write down the probability that a single spin
is up. Then determine the Shannon-Gibbs entropy of a single spin, being sure
that you use a normalized distribution. Then use this to infer the entropy of the
entire system.



(c) Determine S as a function of T by direct counting and using the microcanonical
ensemble as we did in class.

(d) Show that, in the N →∞ limit, your answers for questions 2a, 2b, and 2c agree.

3. Show that the canonical distribution

pi ∝ e−βEi (3)

minimizes the free energy F = E − TS. To show this, use the Shannon form of the
entropy, and use

E =
∑
i

piEi . (4)

4. Fun with counting and binomial coefficients.

(a) Five spin variables, s1, s2, . . . , s5, in a magnetic field are statistically independent.
Each can take the values ±h̄/2 with the probabilities:

Pr(s = h̄/2) = p , and Pr(s = −h̄/2) = 1− p . (5)

What is the probability that exactly three spins are up (+h̄/2)? (Garrod, problem
1.2)

(b) Twelve books, containing a 4-volume series, are placed in random order on a shelf.
What is the probability that the series is placed together and in order from left
to right? (Garrod, problem 1.5)

5. A harmonic oscillator oscillates with amplitude A. If the time t is chosen at random,
what is the probability that a ≤ x(t) ≤ a+ da? (Garrod, problem 1.22)

6. Each second a particle, which was initially at x = 0, jumps either left or right a distance
a, each with a probability of 1

2
. At time tn = n the particle is at location xk = ka with

probability Pr(n, k). Calculate Pr(n, k) and show that, as n and k approach infinity,
your result agrees with the central limit theorem. (I.e., show that Pr(n, k) is a Gaussian
distribution.) (Garrod, problem 1.27) This problem is a little tricky. It’s a standard
illustration of the central limit theorem. As such, you should be able to find textbook
references that will help.

7. The probability W (n) that an event characterized by a probability p occurs n times in
N trials was shown to be given by the binomial distribution:

W (n) =
N !

n!(N − n)!
pn(1− p)N−n . (6)



Consider a situation where the probability p is small (p� 1) and where one is interested
in the case n� N . (Note that if N is large, W (n) becomes very small if n→ N because
of the smallness of the factor pn when p� 1. Hence W (n) is indeed only appreciable
when n� N .) several approximations can then be made to reduce Eq. (6) to simpler
form.

(a) Taylor expanding ln(1− p) for small p, show that (1− p)N−n ≈ e−Np.

(b) Show that N !/(N − n)! ≈ Nn.

(c) Finally, show that

W (n) =
λn

n!
e−λ , (7)

where λ ≡ Np is the mean number of events. (Reif, problem 1.9)

8. Problem 5.24 from Chandler. This problem involves a figure which I’m not going to
try and reproduce. Find a copy of Chandler and photocopy pp.155-6.


