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Chapter 1

Background in Information
Theory

In this chapter I’ll introduce some of the essential ideas and quantities from
information theory. The material reviewed here is standard. A good, thor-
ough reference is the text by Cover and Thomas [8]. I find this text to be
a excellent blend of rigor and qualitative reasoning. The original paper [43]
by the founder of information theory, Claude Shannon has been reprinted in
[44]. Ref. [44] also contains a very nice, mostly qualitative introduction to
information theory by Shannon and Weaver. Shannon’s papers have been
collected in Ref. [46]. The statistical mechanics textbook by Robertson [40]
contains a nice discussion of Shannon’s information in the context of sta-
tistical mechanics. In general I like Robertson’s approach, but sometimes
in his book it’s hard to see the forest for the trees. Baierlein’s text [2] also
discusses statistical mechanics from an information theory point of view.
His discussion of probability and entropy is excellent and he does a nice job
motivating the definition of the Shannon entropy. The range of statistical
mechanics topics that he covers is not very modern, however. Another in-
troduction to information theory is that of Pierce [38]. This has a very high
word to equation ratio. I’ve only glanced at it, but it seems quite good.

1.1 Notation

In the following, I shall use capital letters to indicate a discrete random
variable, and lowercase letters to indicate a particular value of that variable.
For example, let X be a random variable. The variable X may take on the
values x ∈ X . Here X is the finite set of all possible values for X and is

1



referred to as the alphabet of X.
The probability that X takes on the particular value x is written Pr(X =

x), or just Pr(x). We may also form joint and conditional probabilities. Let
Y be another random variable with Y = y ∈ Y. The probability that X = x
and Y = y is written Pr(X = x, Y = y), or Pr(x, y) and is referred to as
a joint probability. The conditional probability that X = x given Y = y is
written Pr(X = x|Y = y) or simply Pr(x|y).

1.2 Shannon Entropy and its Many Interpreta-

tions

1.2.1 Entropy as Uncertainty

The use of probabilities to describe a situation implies some uncertainty. If
I toss a fair coin, I don’t know what the outcome will be. I can, however,
describe the situation with a probability distribution: {Pr(Coin = Heads) =
1/2,Pr(Coin = Tails) = 1/2}. If the coin is biased, there is a different
distribution: {Pr(BiasedCoin = Heads) = 0.9,Pr(BiasedCoin = Tails) =
0.1}.

All probability distributions are not created equal. Some distributions
indicate more uncertainty than others; it is clear that we are more in doubt
about the outcome of the fair coin than the biased coin. The question before
us now is: can we make this notion of uncertainty or doubt quantitative?
That is, can we come up with some mathematical entity that takes a proba-
bility distribution and returns a number that can be interpreted as a measure
of the uncertainty associated with that distribution.

Let’s proceed by considering what features such a measure should have.
For concreteness, let’s call this measure H[X]. That is, H takes the prob-
ability distribution of X X = {Pr(1),Pr(2), , · · ·Pr(N) } and returns a real
number. The picture here is that there are N possible values X can assume,
and Pr(i) is the probability that X equals the ith possible value.

First, we surely want H to be maximized by a uniform distribution. After
all, a uniform distribution corresponds to complete uncertainty. Everything
is equally likely to occur — you can’t get much more uncertain than that.

Second, it seems reasonable to ask that H is a continuous function of the
probabilities. An arbitrarily small change in the probabilities should lead to
an arbitrarily small change in H.

Third, we know that we can group probabilities in different ways. For
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example, consider a variable X with the following distribution

X = {Pr(X = A) = .5,Pr(X = B) = .2,Pr(X = C) = .3 } . (1.1)

One way to view this distribution is that outcome C or B occurs half of the
time. When it does occur, outcome B occurs with probability .4. That is:

X = {Pr(X = A) = .5,Pr(X = Y ) = .5, } , (1.2)

Y = {Pr(Y = B) = .4,Pr(Y = C) = .6 } . (1.3)

We would like the uncertainty measure H not to depend on what sort of
grouping games we play. In other words, we want H to be a function of the
distribution itself and not a function of how we group events within that
distribution.

Remarkably, the above three requirements are enough to determine the
form of H uniquely up to a multiplicative constant.

1.2.2 Axiomatic Definition

Let’s state the above three requirements more carefully and generally. Let
H(p) be a real-valued function of Pr(1),Pr(2), · · · ,Pr(N). Let the following
three requirements hold:

1. H( Pr(1),Pr(2), · · · ,Pr(N) ) reaches a maximum when the distribution
is uniform; Pr(i) = 1/N ∀ i.

2. H( Pr(1),Pr(2), · · · ,Pr(N) ) is a continuous function of the Pr(i)’s.

3. The last requirement is awkward to write mathematically, but no less
intuitive than the first two. As mentioned above, the idea is that
we want H to be independent of how we group the probabilities of
individual events into subsets. I’ll follow the notation of Robertson
[40]. Let the N probabilities be grouped into k subsets, wk:

w1 =
n1
∑

i=1

pi ; w2 =
n2
∑

i=n1+1

pi ; . . . (1.4)

Then, we assume

H[p] = H[w] +
k

∑

j=1

wjH[{pi/wj}j ] , (1.5)

where the notation {pi/wj}j indicates that the sum extends over those
pi’s which make up a particular wj .
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Given the above three requirements, it follows that,

H[X] = k
∑

x∈X

Pr(x) log Pr(x) , (1.6)

where k is an arbitrary constant [8, 40, 44]. The choice of constant amounts
to nothing more than a choice of units. For the remainder of this paper, I
shall use base 2 logarithms and fix k at -1. The units of H[X] for this choice
of constant are called bits.

Thus, we define the Shannon entropy of a random variable X by:

H[X] ≡ −
∑

x∈X

Pr(x) log2(Pr(x)) . (1.7)

The notation H[X] can be misleading. H[X] is not a function of X! It is a
function of the probability distribution of the random variable X. The value
of H[X] does not depend on whatever value X assumes.

Note that the entropy is never negative. One can easily prove that

H[X] ≥ 0 . (1.8)

Also note that H[X] = 0 if and only if X is known with certainty: i.e., the
probability of one outcome is 1 and the probability of all other outcomes is
0. (To show this one needs to use limx→∞ x log2 x = 0.)

The axiomatic definition of H given above justifies the following state-
ment: H(p) is the quantitative measure of the amount of uncertainty asso-
ciated with a probability distribution p. But the story does not end here.
There are many other ways we can view the Shannon entropy. In the fol-
lowing several sections, we explore some of these additional interpretations.

1.2.3 Shannon Entropy as Thermodynamic Entropy

It is not hard to show that H(p) is equivalent to the usual thermodynamic
entropy,

S(E) = log N(E) (1.9)

where N(E) is the number of accessible microstates as function of energy
E. Since microstates of equal energy are assumed to be equally likely, the
probability of the ith state occurring is just

Pr(i) =
1

N(E)
, ∀ i . (1.10)
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Plugging Eq. (1.10) into Eq. (1.7), we see immediately that the thermody-
namic entropy, Eq. (1.9) results.

It is this connection with thermodynamics that led Shannon to call his
uncertainty measure entropy. (Legend has it that he was encouraged to do
so by John von Neumann, who said that since no one really understands
what entropy is, calling his new measure entropy would give Shannon “a big
edge in the debates.”)

1.2.4 Shannon Entropy as Average Surprise

Here is another way to view Eq. (1.7): The quantity − log2 Pr(i) is sometimes
referred to as the surprise associated with the outcome i. If Pr(i) is small,
we would be quite surprised if the outcome actually was i. Accordingly,
− log2 Pr(i) is large for small Pr(i). And if Pr(i) is large, we see that the
surprise is small. So it seems entirely reasonable to call − log2 Pr(i) the
surprise.

Thus, we may view Eq. (1.7) as telling us that H[X] is the expectation
value of the surprise;

H[X] =
∑

x

{− log2 Pr(x)}Pr(x) = 〈− log2 Pr(x) 〉 . (1.11)

The entropy tells us, on average, how surprised we will be if we learn the
value of the variable X. This observation strengthens the assertion that
H(p) is a measure of the uncertainty associated with the probability distri-
bution p. The more uncertain we are about an outcome, the more surprised
we will be (on average) when we learn of the actual outcome.

We can also use this line of reasoning to see why H is referred to as
information. Let us return to the example of a coin toss. Suppose I told
you the outcome of the toss of a fair coin. This piece of information would
be quite interesting to you, as before I told you the outcome you were com-
pletely in the dark. On the other hand, if it is the biased coin with a 90%
probability of heads that is thrown, telling you the outcome of the toss is
not as useful. “Big deal” you might say. “I was already pretty sure it was
heads anyway; you really haven’t given me much information.” It is in this
sense that H[X] provides a measure of information. The greater H[X], the
more informative, on average, a measurement of X is.

1.2.5 Entropy and Yes-No Questions

Entropy is also related to how difficult it is to guess the value of a random
variable. This is discussed rather thoroughly and clearly in chapter 5 of
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Ref. [8]. Here, I’ll just explain the general ideas qualitatively.
We begin with an example. Consider the random variable X with fol-

lowing distribution:

{Pr(X = A) = 1/2, Pr(X = B) = 1/4,

Pr(X = C) = 1/8, Pr(X = D) = 1/8} . (1.12)

On average, how many yes-no questions will it take you to figure out the
value of X? Well, your first guess would be X = A. You would be right
half of the time. Thus, half of the time you’ll only need one question to
guess correctly. If you guessed incorrectly, your next move would be to
guess X = B. Again, you will be right half of the time. So, half of the time
you’ll need to make the X = B guess, and half of the time that guess will
be correct. As a result, 1/4 of the time it will take two guesses to determine
X.

If your X = B guess was incorrect, you’ll need to make one more guess,
say, X = C. Regardless of the outcome of this guess, you’ll end up knowing
the value of X, since if X 6= C, it must be that X = D. So, half of the
time you’ll need to make the X = B guess, and half of the time that guess
will be wrong, necessitating the X = C guess. Hence, 1/4 of the time you’ll
need to make 3 guesses. Adding this up, we have:

Average # of Guesses =
1

2
(1) +

1

4
(2) +

1

4
(3) = 1.75 . (1.13)

It turns out that the entropy of the distribution given in Eq. (1.12) is exactly
equal to 1.75!

This is not a coincidence. One can show that [8]

H[X] ≤ Average # of Yes/No Questions to Determine X ≤ H[X] + 1 .
(1.14)

This result assumes that the guesser is making optimal guesses. That is,
roughly speaking at every guess, he or she tries to “divide the probability
in half.” This is exactly the strategy we employed in the above example.

Eq. (1.14) might appear a little mysterious as first. As a slightly less
mysterious example, consider another distribution:

{Pr(Y = α) = 1/4, Pr(Y = β) = 1/4,

Pr(Y = γ) = 1/4, Pr(Y = δ) = 1/4} . (1.15)

Clearly it will take an average of 2 guesses to determine the value of Y . The
variable X is easier to guess because a lot of the probability is concentrated
on X = A and X = B, and we can exploit this in our guessing.
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This idea of entropy as the average number of yes-no guesses is consonant
with our earlier interpretation of entropy as a measure of uncertainty. The
more uncertain we are about an event, the harder it is to guess the outcome.

1.2.6 Entropy and Coding

Let’s pause now and consider coding. What is a code? Well, at the simplest
level, it’s just one thing that stands for another thing. We can code base-10
digits using a hexadecimal alphabet and we can code English letters using
Morse code. Sometime we encode an object to make it secret. For example,
when I send my credit card number over the internet to order some Peet’s
coffee beans I make sure that my web browser encrypts the credit card
information so that my card number remains a secret to any third parties
who may be “listening in”. We may also encode an object to “make it
smaller” so it can be stored or transmitted efficiently. It is this second type
of coding that we will consider here.

How does one devise an efficient code? The idea is to choose short code
words for objects that occur most frequently. As an example, consider again
the example of Eq. (1.12). It makes sense to use the shortest possible code
for the event X = A since it has the highest probability of occurring.

This business of choosing more probable events should be familiar—it’s
almost identical to the strategy we employed when we were trying to guess
what X was. In fact, the process of yes-no guessing specifies a binary code
[8]. Stating the mathematical definition of a code is a little cumbersome and
subtle and goes beyond the scope of this introduction. (For example, one
must deal with the issue of how one knows when one code word ends and
another begins.)

Rather than go through the details, let’s just consider again the example
of Eq. (1.12). Recall our procedure for guessing the outcome of X and
consider the sequence of questions that led up to our determining a particular
value. To make our code, for each “yes” answer we’ll use a 1 and for each
“no” answer we’ll use a 0. The result is the following code:

A −→ 1

B −→ 01

C −→ 001

D −→ 000 (1.16)

For example, if we discovered that X = B we would have gotten a “no” to
our first questions and a “yes” to our second, corresponding to 01.
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Given this correspondence between yes-no questions and binary coding,
we see that Eq. (1.14) implies that:

H[X] ≤ Average Length of Binary Code for X ≤ H[X] + 1 . (1.17)

Before wrapping up this section, I’ll state a slightly more technical result.
Suppose one is encoding N identically distributed random variables X with
a binary code. Then, in the N →∞ limit:

1

N
(Average Length of Optimal Binary Code for X) = H[X] . (1.18)

This is the famous Shannon source coding theorem.
Each digit in a binary code corresponds to one bit, a flip-flop memory

device that can be in one of two positions. Thus, Eq. (1.18) tells us that
H[X] is the average number of bits needed to store the value of the random
variable X.

1.3 Joint and Conditional Entropy

I’ll continue by defining some variants of the entropy discussed above. Most
of these quantities are quite well named. I’ll also state some relationships
and properties of these quantities.

First, the joint entropy of two random variables, X and Y , is defined in
the natural way:

H[X,Y ] ≡ −
∑

x∈X

∑

y∈Y

Pr(x, y) log2(Pr(x, y)) . (1.19)

The joint entropy is a measure of the uncertainty associated with a joint
distribution.

Next, we define the conditional entropy:

H[X|Y ] ≡ −
∑

x∈X

∑

y∈Y

Pr(x, y) log2 Pr(x|y) . (1.20)

As one would guess from its name, the conditional entropy measures the
uncertainty associated with a conditional probability. Note that H[X|Y ] is
the expectation value of the conditional surprise, − log2 Pr(x|y) where the
average is weighted by the joint distribution.

By writing Pr(x, y) = Pr(x)Pr(y|x) and taking the expectation value of
the log of both sides of this equation, we see that the joint entropy obeys
the following, pleasing chain rule:

H[X,Y ] = H[X] + H[Y |X] . (1.21)
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There are two noteworthy consequences of this observation. First, we may
write

H[Y |X] = H[X,Y ]−H[X] . (1.22)

As H[X] ≥ 0, we obtain the sensible result that conditioning reduces en-
tropy. That is, knowledge of one variable can never increase our uncertainty
about other variables. Second, Eq.(1.21) makes it quite clear that

H[y|x] 6= H[x|y] . (1.23)

1.4 Mutual Information

We now turn our attention to mutual information. We define the mutual

information, I[X;Y ] , of two random variables X and Y via:

I[X;Y ] ≡
∑

x∈X

∑

y∈Y

Pr(x, y) log2

[

Pr(x, y)

Pr(x)Pr(y)

]

. (1.24)

Some straightforward manipulations show us that

I[X;Y ] = H[X]−H[X|Y ] (1.25)

= H[Y ]−H[Y |X] (1.26)

= H[Y ] + H[X]−H[X,Y ] . (1.27)

The above shows quite clearly that I(X;Y ) = I(Y ;X).
Eq. (1.25) show us why I is called the mutual information; we see that

mutual information between two variables is the reduction in uncertainty of
one variable due to knowledge of another. If knowledge of Y reduces our
uncertainty of X, then we say that Y carries information about X.

Looking at Eq. (1.24), it’s not hard to see that I[X;Y ] vanishes if X
and Y are independently distributed; Pr(x, y) = Pr(x)Pr(y). Also, we see
that the mutual information between two variables vanishes if both variables
have zero entropy.

1.5 Entropy of Continuous Variables

1.5.1 Continuous Entropy ←→ Discrete Entropy

Can Shannon’s entropy, Eq. (1.7) be generalized to apply to a continuous
variable? The “principle of least astonishment” suggests that

Hc[X] = −
∫

dxPr(x) log2 Pr(x) . (1.28)
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It turns out that this is the case. However, we should invoke more rigor
than the principle appealed to above.

While the above equation seems logical, it’s not as simply obtained from
the discrete formula, Eq. (1.7), as one might think. As an example, let’s
imagine the transition from a discrete partitioning of the unit interval to
the interval itself. We can easily form a picture of how to do this by letting
the “width” of the discrete partitions get smaller and smaller. However, as
we do this, the number of partitions grows. Thus, the number of variables
(partitions) diverges and the entropy diverges as well.

So, defining the entropy for the case of a continuous variable requires
some care. In the following careful discussion, I follow closely the exposition
in Cover and Thomas [8]. Let us consider a random variable X with a prob-
ability distribution f(x). We can then divide the range of X into discrete
bins of width ∆. We discretize x by forming the variables X∆, defined by:

X∆ = xi , if i∆ ≤ X < (i + 1)∆ . (1.29)

The notation here is that X∆ refers to the discrete variables that can take on
the values xi. The numbers xi are a particular value, to be chosen below, in
the interval. The probability that X∆ = xi is obtained simply by integrating
the probability density over the appropriate interval:

Pr(X∆ = xi) ≡ pi =

∫ (i+1)∆

i∆
f(x)dx . (1.30)

We now harken back to the days of Calc I. According to the mean value
theorem, within each of these bins of length ∆ there exists some xi such
that

f(xi)∆ =

∫ (i+1)∆

i∆
f(x)dx . (1.31)

Let’s choose to use the above xi’s as our xi’s in Eq. (1.29). Thus, we can
combine the above two equations and write

pi = f(xi)∆ . (1.32)

We are now may use these probabilities to write down the discrete en-
tropy, Eq. (1.7), of our discretized variable X∆:

H[X∆] = −
∑

i

pi log2 pi (1.33)

−
∑

i

f(xi)∆ log2[f(xi)∆] (1.34)
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−
∑

i

f(xi)∆ log2 f(xi)−
∑

i

f(xi)∆ log2 ∆ (1.35)

−
∑

i

f(xi)∆ log2 f(xi)− log2 ∆ . (1.36)

The last equality follows from the normalization of the distribution f(x).
Again hearkening back to Calc I, we notice that as the width of our bins
vanishes, the first term approaches the integral of f(x) log2 f(x). Thus,

H[X∆] −→ H[X]− log2 ∆, as ∆ −→ 0 . (1.37)

Where Hc is the entropy for a continuous random variable as defined in
Eq. (1.28). Note that − log2 ∆ diverges as ∆ vanishes. This is exactly the
explosion anticipated above associated with the infinite uncertainty of an
infinite number of variables.

The moral of the above story is that the entropy of a continuous random
variable does not equal the entropy of the discretized random variable in
the limit that the bin size goes to zero. The inequality arises because when
taking the limit, the number of variables goes to infinity and thus has infinite
entropy. If this divergence associated with vanishing bin sizes is subtracted
away, then one obtains the entropy for a continuous variable.

1.5.2 Careful Definition

Let’s restate the definition of the entropy of a continuous variable slightly
more carefully and then examine a few of its properties. Following Cover
and Thomas [8, p. 224], let X be a random variable with a cumulative
distribution F (x) ≡ Pr(X ≤ x). The variable X is said to be continuous if
the function F (x) is continuous. The probability density function for X is
given by f(x) ≡ F ′(x), provided that f(x) is normalized. Those values of x
for which f(x) 6= 0 are referred to as the support set of X.

We then define the differential entropy of a continuous random variable
X as:

Hc[X] ≡ −
∫

f(x) log2 f(x) dx . (1.38)

The integration is understood to be over the support set of X.
The differential entropy behaves somewhat differently than its discrete

cousin. Most notably, Hc can be negative. For example, consider a variable
uniformly distributed on the interval (0, b). The probability density function
is 1/b and the entropy is log2 b. Clearly if b < 0 we’ll have negative entropy.

The differential entropy is unchanged by a shift of variable. That is,

Hc[Y + l] = Hc[Y ] . (1.39)
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However, rescaling the variable does change the entropy;

Hc[bX] = Hc[X] + log2 |b| . (1.40)

More generally, if ~X is a vector-valued variable and A is some matrix, one
can show that [8, p. 232]

Hc[A ~X ] = Hc[ ~X ] + log2 |det A| . (1.41)

Differential conditional entropy and mutual information are defined in
the obvious ways. While the differential entropy can be negative, the differ-
ential mutual is still non-negative:

Ic[X;Y ] ≥ 0 . (1.42)

It is also comforting to note that the differential information between
the continuous variables X and Y is equal to the limit of the discretized
versions of X and Y in the limit that the bin sizes go to zero. Thus, there is
no need for the subscript c indicating that the variables are continuous and
it will subsequently be omitted.

If two continuous variables are simultaneously rescaled by the same fac-
tor, their mutual information is unchanged;

I[aX; aY ] = I[X;Y ] . (1.43)

Indeed, one would be distressed if the mutual information did not have this
property.

I conclude this section by mentioning, as Cover and Thomas do, that
all of these above formulae hold only if the integrals exist. This leads to
some interesting existential thoughts. (Does x = y if neither x nor y exist?)
Putting these thoughts on hold for a later time, we now proceed to the next
chapter to define and discuss the excess entropy.
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Chapter 2

Entropy Density and Excess
Entropy

In this chapter we apply the ideas of Chapter 1 to infinite strings of symbols.
Entropy density is a standard quantity; a discussion of it can be found in
most texts on information theory and many texts on dynamical systems.
Excess entropy is not a standard quantity. To my knowledge, it has not
been discussed in any texts. A brief history of excess entropy isfound below
in sec. 2.3.

There are several relatively recent review articles on excess entropy and
entropy convergence: e.g., Refs. [18, 20, 49]. Those wishing to go into greater
depth are urged to consult those reviews. The goal of this chapter, then, is
to present the main ideas behind excess entropy and entropy convergence so
that the reader finds these somewhat more technical review articles accessi-
ble.

2.1 Entropy Density

Let’s begin by fixing some notation. Consider an infinite string:

↔
S = . . . S−1 S0 S1 S2 . . . (2.1)

chosen from some finite alphabet, Si = si ∈ A. We may view this sequence
of variables as being a time series of measurements, the symbolic dynamics
from some map, or the configurations of a statistical mechanical spin chain.
We denote a block of L consecutive variables as SL = S1, . . . , SL. Let
Pr(si, si+1, . . . , si+L) = Pr(sL) denote the joint probability over blocks of
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L consecutive symbols. We shall assume translational invariance:

Pr( si, si+1, · · · , si+L ) = Pr( s1, s2, · · · , sL ) ∀ i, L . (2.2)

Equivalently, this requirement means that the symbols may be viewed as
having been generated by a stationary stochastic process.

We may divide this infinite string into a left half (“past”)
←
S , and a right

half (“future”)
→
S , as follows:

←
S ≡ · · ·S−3 S−2 S−1 , (2.3)

and
→
S ≡ S0 S1 S2 · · · . (2.4)

We would like to measure the entropy of the string
↔
S . How can we go

about doing this? Well, we can start by figuring out the entropy of blocks

of adjacent variables within
↔
S . Let the Shannon entropy of a block of L

consecutive symbols be denoted by H(L):

H(L) ≡ −
∑

s1∈A

. . .
∑

sL∈A

Pr (s1, . . . , sL) log2 Pr (s1, . . . , sL) . (2.5)

To determine the entropy of the entire system
↔
S , we could take the L→∞

limit. It is not hard to see, however, that H(L) will diverge as L goes to
infinity. After all, as L goes to infinity we’re trying to keep track of an
infinite number of variables, so it certainly seems reasonable that H(L) will
also be infinite.

This divergence is a drag; we would like to be able to compare the entropy
of different infinite strings of random variable, yet this will be hard if the
entropy is infinite. Fortunately, there’s a natural solution to this problem;
we form an entropy density:

hµ ≡ lim
L→∞

H(L)

L
. (2.6)

The quantity hµ goes by different names depending on the area of applica-

tion. If we view
↔
S as a spatially-extended system such as a one-dimensional

Ising system, hµ is known as the entropy density or the entropy per site. If

we view
↔
S as a time series or as a discrete signal being transmitted across,

say, a telegraph line, hµ would be called the entropy rate. In dynamical
systems parlance, hµ is known as the metric entropy.
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It is perhaps not immediately obvious that the limit in Eq. (2.6) exists. I
won’t prove the existence of the limit here, but I will try to make its existence
moderately plausible. As the length of our block of variables grows, the
probability of any one particular L-block tends to decrease exponentially.
For example, if the variables are independently chosen by a fair coin, then
Pr(sL) = 2−L ∀ sL. As a result, log2[Pr(sL)] ∼ L. Plugging this into
Eq. (2.6), we see that the limit will exist. More rigorously, one can show
that hµ exists (at a minimum) for all stationary stochastic processes [8].

The entropy density can also be written in terms of a conditional entropy:

hµ = lim
L→∞

H[SL|S0S1 . . . SL−1] . (2.7)

Thus, hµ is the uncertainty of the distribution over L-blocks of spins con-
ditioned on the first (L− 1) spins in that block. These two expressions are
shown in Sec. (A.1) to be equivalent.

Eq. (2.7) provides us with another interpretation of hµ; it is the entropy,
or uncertainty, associated with a given symbol if all the preceding symbols
are known. Put another way, the entropy density provides an answer to the
question: given the knowledge of all the previous symbols, how uncertain
are you, on average, about the next symbol? Thus, we may view hµ as the
intrinsic unpredictability associated with the string; hµ is the irreducible
randomness in the spatial configurations, the randomness that persists as
larger and larger blocks of spins are considered.

For a string generated by the tossing of a fair coin, the entropy rate is one
bit per symbol. The coin tosses are independent; knowledge of the previous
tosses tells you nothing about the outcome of the next toss. On the other
hand, if we were considering a highly correlated process, the entropy rate
would be much smaller. If there are strong correlations between symbols,
knowledge of all the previous symbols will greatly decrease our uncertainty
about the value of the next. The entropy rate captures the randomness or
unpredictability inherent in the process.

There is yet another way to express the entropy density. It is not hard
to show that:

hµ = lim
L→∞

[H(L + 1)−H(L)] . (2.8)

As we shall see in the next section, this way of writing the entropy density
makes it clear that hµ is the growth rate in the entropy as larger blocks of
variables are considered.

Eqs. (1.7), (2.8), and (2.7) give different expressions for the entropy rate
hµ. These are all equivalent in the present setting, though they need not be
for nonequilibrium or nonstationary processes.
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2.1.1 Entropy Density and Kolmogorov-Chaitin Complexity

The entropy rate hµ is related to the Kolmogorov-Chaitin (KC) complexity.
The KC complexity of an object is the length of the minimal Universal
Turing Machine (UTM) program needed to reproduce it. It turns out that
hµ is equal to the average length (per variable) of the minimal program
that, when run, will cause a universal Turing machine to produce a typical
configuration and then halt [8, 32].

This result is not that surprising. We saw in Chapter 1 that the Shannon
entropy of a variable is equal to the average length of the optimal binary
encoding for that variable. In this sense, H[x] provides a measure of the
average length of description of X—although a description of a particular
form: binary coding. KC complexity measures a different type of descrip-
tion length: input programs for a UTM. There are certainly big differences
between binary encoding and programs to be given to a UTM. However,
in the limit that we are encoding an infinitely long string, these differences
don’t matter; both the UTM program and the binary encoding will grow at
the same rate.

2.1.2 What Entropy Density Isn’t

Let’s conclude this section with an example. Consider the following two
strings:

↔
SA = . . . 101010101010101010101010101010 . . . , (2.9)

and
↔
SB = . . . 10101100101011001010110010101100 . . . . (2.10)

Both of these strings are periodic; a given block of symbols repeats indef-
initely. As such, both can be predicted with certainty and both have zero
entropy density; to predict the values of successive symbols, all one has to
do is remember where in the pattern one is. But clearly these two systems

aren’t the same. The period of
↔
SB ’s pattern is longer than that of

↔
SA; thus

one might expect that in some sense
↔
SB is “harder” to predict than

↔
SA.

This is a distinction between systems that hµ does not make. The entropy
density indicates how predictable a system is—it says nothing about how
hard it is to do the predicting. How can we measure this feature that the
entropy density misses? Stay tuned.
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Figure 2.1: Total thermodynamic entropy growth: a schematic plot of H(L)
versus L. H(L) increases monotonically and asymptotes to the line E + hµL,
where E is the excess entropy, and hµ is the thermodynamic entropy density.

2.2 Entropy Growth and Convergence

The Shannon entropy H(L) over L-blocks is a monotonic increasing function
of L. This is a simple consequence of the equality H(L + 1) ≥ H(L) [8]. A
schematic plot of H(L) vs. L is shown in Fig. (2.1).

Recall that Eq. (2.8) showed us that the entropy density can be written
as the difference between H(L + 1) and H(L) in the limit that L goes to
infinity. As as result, we see that the “terminal velocity” (i.e., the slope as
L → ∞) of the curve in Fig. (2.1) corresponds to the entropy density hµ.

The entropy density is a property of the system as a whole; only in
special cases will the isolated-spin uncertainty H(1) be equal to hµ. It is
natural to ask, therefore, how random the chain of spins appears when finite-
length spin blocks are considered. That is, how do finite-L approximations
of the entropy density converge to hµ? To help us answer these questions,
we define the following quantity:

hµ(L) ≡ H(L)−H(L− 1), L = 1, 2, . . . , (2.11)

the incremental increase in uncertainty in going from (L − 1)-blocks to L-
blocks. We define H(0) ≡ 0.
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Figure 2.2: Entropy density convergence: A schematic plot of hµ(L) versus
L using the “typical” H(L) shown above in Fig. 2.1. The entropy density
hµ asymptote is indicated by the horizontal dashed line. The shaded area
is the excess entropy E.

Comparing Eq. (2.11) with Eq. (2.8), we see that hµ(L) may be viewed
as the finite-L approximation to the thermodynamic entropy density hµ.
Graphically, hµ(L) is the two-point slope of the H(L) vs. L curve. The
convergence of hµ(L) to hµ is illustrated in Fig. (2.2). The entropy density
hµ is indicated by a horizontal dashed line.

The length-L approximation to the entropy density hµ(L) overestimates
the entropy density hµ by an amount hµ(L) − hµ that indicates how much

more random the finite L-blocks appear than the infinite configuration
↔
S

. In other words, this excess randomness tells us how much additional
information must be gained about the configurations in order to reveal the
actual per-spin uncertainty hµ. Summing up the overestimates one obtains
the total excess entropy [15, 47, 45, 24, 35, 34, 33]

E ≡
∞
∑

L=1

[hµ(L)− hµ] . (2.12)

Graphically, E is the shaded area in Fig. (2.2). If one inserts Eq. (2.11) into
Eq. (2.12), the sum telescopes and one arrives at an alternate expression for
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the excess entropy
E = lim

L→∞
[H(L) − hµL] . (2.13)

Hence, E is the y-intercept of the straight line to which H(L) asymptotes
as indicated in Fig. (2.1).

Looking at Eq. (2.12), we see that, informally, E is the amount (in bits),
above and beyond hµ, of apparent randomness that is eventually “explained”
by considering increasingly longer spin-blocks. Conversely, to see the actual
(asymptotic) randomness at rate hµ, we must extract E bits of informa-
tion from measurements of spin blocks. Thus, we would expect a large E
to indicate a large amount of structure; E is large if there are larger scale
correlations which account for the apparent randomness observed when dis-
tributions over small blocks of spins are considered.

This interpretation is strengthened by noting that E may be expressed
as the mutual information I, defined in Eq. (1.24), between the two semi-
infinite halves of a configuration;

E = I(
←
S ;
→
S) ≡

∑

{
↔

s }

Pr(
↔
s ) log2

[

Pr(
↔
s )

Pr(
←
s )Pr(

→
s )

]

. (2.14)

Note that this form makes it clear that E is spatially symmetric. The
mutual information can also be written as the difference between a joint
and conditional entropy [8]:

I(
←
S ;
→
S) = H[

←
S ]−H[

←
S |

→
S ] . (2.15)

In other words, E measures the average reduction in uncertainty of
←
S , given

knowledge of
→
S . One must carefully view Eq. (2.14) since it contains entropy

components, like H(
↔
S), that may be individually infinite—even for a fair

coin process.
Eqs. (2.14) and (2.15) allow us to interpret E as a measure of how much

information one half of the spin chain carries about the other. In this re-
stricted sense E measures the spin system’s apparent spatial memory. If
the configurations are perfectly random or periodic with period 1, then E
vanishes. Excess entropy is nonzero between the two extremes of ideal ran-
domness and trivial predictability, a property that ultimately derives from
its expression as a mutual information. That is, the mutual information
between two variables vanishes either (i) when the variables are statistically
independent or (ii) they have no entropy or information to share. These
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extremes correspond to E vanishing in the cases of ideal randomness and
trivial predictability, respectively.

To summarize, then, the excess entropy E provides a measure of the
apparent memory stored in a spatial configuration. Colloquially, E tells us
how much the left half of the configuration “remembers” about the left.
Another way of viewing this is that E is the “cost of amnesia”—the excess
entropy measures how much more random the system would become if we
suddenly forgot all information about the left half of the string.

2.3 History of Excess Entropy

The total excess entropy was first introduced by Crutchfield and Packard
in refs. [15, 14, 13, 37] where they examined entropy convergence for noisy
discrete-time nonlinear mappings. They developed a scaling theory for the
entropy convergence rate γ: hµ(L)−hµ ∝ 2−γL, where, for Markovian finite-
memory discrete-time sources, the excess entropy and entropy convergence
are simply related: E = (H(1) − hµ)/(1 − 2−γ). Analytical calculations
of entropy convergence or E for some simple discrete-time nonlinear maps
were carried out by Szépfalusy and Györgyi [47]. Excess entropy was re-
coined “stored information” by Shaw [45] and subsequently “effective mea-
sure complexity” by Grassberger [24]. These two authors emphasize the view
shown in Fig. 2.1. It has been discussed in the context of cellular automata
by Grassberger [24] and by Lindgren and Nordahl [35]. Excess entropy
is also mentioned briefly by Lindgren in ref. [34]. The quantity is simply
called “complexity” when applied to simple stochastic automata by Li [33].
Crutchfield and I have calculated the excess entropy for one-dimensional
spin systems with finite-range interactions [11] and have compared the ex-
cess entropy to existing statistical mechanical measures of structure and
correlation [22]. We also discuss the excess entropy in [22]. As noted above,
Refs. [18, 20, 49] are recent reviews of entropy convergence and excess en-
tropy.

Refs [24, 35] both provide fairly readable introductions to excess entropy.
(These references also serve as a reminder that the study of “complexity”
is not a phenomena that began in the ’90’s!) Ref. [22] is also intended to
be a clear introduction to excess entropy and statistical complexity. These
lecture notes are an expanded version of the introductory sections of ref. [22].
Ref. [45] is also recommended.
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Figure 2.3: Total thermodynamic entropy growth: a schematic plot of H(L)
versus L. H(L) increases monotonically and asymptotes to the line E + hµL,
where E is the excess entropy, and hµ is the thermodynamic entropy density.
The shaded area is the transient information T.

2.4 Transient Information

Finally, I mention briefly a new information-theoretic measure of structure,
the transient information, introduced by Crutchfield and myself in Ref. [18]
and discussed further in Refs. [12] and [21].

The transient information T measures the manner in which the total
block entropy H(L) approaches its asymptotic value E + hµL. Specifically,
it is defined by:

T ≡
∞
∑

L=0

E + hµL−H(L) . (2.16)

Graphically, the transient information is the shaded area in Fig.2.3.
As discussed in Refs. [18, 12], the transient information is a measure of

how difficult it is to synchronize to an information source. If the source is
Markovian, and we picture a scenario in which the observer has an accu-
rate model of the process’s internal states, then the transient information
is related to the total internal-state-uncertainty experienced by an observer
while synchronizing.

In Ref. [21], we report the results of exhaustively calculating the transient
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information for all distinct periodic sequences up to and including period
23. This allows us to make a number of observations about the different
structural properties of different sequences with the same period. These
observations cannot be made by using the excess entropy, since the excess
entropy for any sequence of period P is log2 P .

For a much more thorough discussion of the transient information and
its applications and implications, the reader is referred to Refs. [18, 12, 21].
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Chapter 3

Computational Mechanics

Note: This section is considerably out of date and is probably less
polished and certainly less thoroughly referenced than the previ-
ous two chapters. A recent mathematical review of computational
mechanics is found in Ref. [41]. Links to tutorials and pedagogi-
cal pieces on computational mechanics can be found at http://www.
santafe.edu/projects/CompMech/tutorials/CompMechTutorials.html .

In the previous chapter we saw that the excess entropy E provides a
measure of the spatial memory stored in configurations. However, we cannot
interpret this as the memory needed to statistically reproduce the configu-
rations, although we shall see in section 3.4.5 that these two subtly different
notions of memory aren’t unrelated. More importantly, excess entropy and
the apparatus of information theory tell us nothing about how the system’s
memory is utilized. Computational mechanics addresses this issue, by mak-
ing use of the architectural models of computation theory. For a review of
computation theory, see, for example, refs. [7, 29]. The tools and ideas of
computational mechanics have to date only appeared in research literature.
A brief summary of references can be found in sec. (3.5). We shall see that
this additional set of theoretical tools will allow us to describe structure and
information processing at a more specific and complete level than we can by
relying on information theory alone.

The basic motivating questions of computational mechanics concern how
a system processes information. That is, in a system of many components,
how is information stored, transmitted, and transformed? For example,
how much information does one half of a spin configuration carry about the
other? How much memory is needed to statistically reproduce an ensemble

23



of configurations? In general, we are interested in inferring the intrinsic
computation being performed by the system itself.

By intrinsic computation we mean something very different than “com-
putation” as the word is typically used in reference either to the use of mod-
ern digital computers as tools for simulation (e.g. “computational physics”)
or to the use of a device to perform useful information processing for some
person, like the updating of a spreadsheet or determining the five billionth
digit of π. Useful computation usually entails fixing the initial conditions
and/or control parameters of a dynamical system so that the outcome con-
tains some information of interest to us, as outside interpreters of the result.
For example, we might employ the mapping

xn+1 =
1

2
(xn +

a

xn
) , (3.1)

which has the useful property that limn→∞ xn =
√

a [31]. This iterative
procedure for increasingly accurate estimates of roots is reported by Hero
of Alexandria [36].

In contrast, when we ask about intrinsic computation, we are interested
not in manipulating a system to produce an output that is useful to us—
which is akin to an engineering stance towards nature. Instead, we are
interested in examining the information processing that the system itself
performs and the underlying mechanisms that support it. As a concrete
example, consider the two-dimensional nearest-neighbor Ising model at the
critical temperature. Here the correlations between spins decay with a power
law as a function of distance, yet the total magnetization of the system
remains zero. Computational mechanics is concerned with what sorts of
effective computation the system must perform to reach and maintain the
critical state. How much historical and/or spatial memory is required? Are
the critical configurations in any way “harder” to reach than the low or high
temperature behavior? More informally, how does the system balance up
and down spins so that the correlations decay as a power law, while keeping
zero magnetization?

3.1 Causal States and ε-machines: Preliminary Ex-
amples

Rather than launching into a flurry of mathematical definitions, we begin our
review of computational mechanics by considering several simple examples.
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After considering these examples, we shall see that we are led quite naturally
to the definitions put forth in the following section.

The questions we shall be addressing are: how can one statistically repro-
duce a given bi-infinite configuration using the minimal amount of memory?
In particular, how much information about the left half must be remembered
to produce the right half? And what must we do with this information? An-
other, equivalent way of stating these questions is: How much memory is
needed to optimally predict configurations? And how is this memory to be
used? Optimal prediction corresponds to being able to predict the value
of the next variable well enough so that the entropy associated with the
prediction equals hµ, the entropy density of the system.

3.1.1 Example 1: A Fair Coin

Consider a string generated by a fair coin toss:

↔
Sα≡ . . . THTTTHHHHHTHTHTTHHT . . . . (3.2)

All the symbols are independently distributed and the probability that any
particular symbol is a heads is 1/2. We begin by asking: How much of
the left half is needed to predict the values of the right half? Restated,
imagine walking down the configuration from left to right, making a note
of the variables you observe as you cross them. After having walked along
the chain of variables for a very long time—long enough for you to have
observed as many spins as you wish—how many spin variables must you
keep track of so that you can optimally predict the spins you will encounter
later in your left to right journey?

AH1/2 T1/2

Figure 3.1: The ε-machine for a fair coin toss. This machine is a model
of the original configuration in the sense that a random walk through the
machine will statistically reproduce the configuration. For more discussion,
see text.

A moment’s thought indicates one does not need to keep track of any
variables. Since the coin tosses are independent, knowledge of previous
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tosses does not reduce your uncertainty about the next toss. As a result, for
this particularly simple example no memory is required to optimally predict
subsequent variables. Here, optimal prediction isn’t that good—the entropy
of the next coin toss is 1, a manifestation of the fact that the entropy density
hµ of the coin toss is 1.

What must one do to perform this optimal prediction? Equivalently,
how can one statistically reproduce the configuration? The answer to these
questions is illustrated in fig. (3.1). Borrowing from the computer science
lexicon, the mathematical entity of fig. (3.1) is called an ε-machine. (The
reason for the ε will be explained below.) The ε-machine of fig. (3.1) tells
us how to statistically reproduce the original configuration generated by
the coin toss. The machine is operated as follows: Start in state A. With
probability 1/2, generate a H and return to state A. With probability 1/2,
generate a T and also return to state A. A random walk through the machine
following these rules results in a string of H’s and T ’s that is statistically

identical to
↔
Sα. In this sense we say that the ε-machine constitutes a model

of the original process
↔
Sα.

3.1.2 Example 2: Period 1 Configuration

Let’s now consider a string consisting of all 1’s:
↔
Sβ≡ . . . 11111111111111111111 . . . . (3.3)

As with the fair coin, it is clear that one doesn’t need to remember any of
the previous symbols to perform optimal prediction. The value of the next
variable will be 1 no matter what the previous variables were. The value
of the next variable can be predicted with probability 1, as reflected by the
zero entropy density hµ.

A11

Figure 3.2: The ε-machine for a string consisting of all 1’s

The ε-machine for
↔
Sβ is shown in fig. (3.2). From state A, the machine

always outputs the symbol 1 and returns to state A. In this way the machine
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statistically reproduces
↔
Sβ. For this example the reproduction is exact, since

hµ = 0.

3.1.3 Example 3: Period 2 Configuration

As a final example, we consider an infinite, period 2 configuration:

↔
Sγ · · · ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ · · · . (3.4)

Again, we begin by asking: How much of the left half is needed to predict the
values of the right half? This time, some memory is needed. One will need
to keep track of one spin, corresponding to the phase of the pattern. Once
this spin value is known you can optimally predict all the subsequent spins.

This prediction can be made with certainty since the entropy density of
↔
Sγ

is zero. To perform this prediction the values of spins, one must distinguish
between the two different phases of the pattern. As a result, the ε-machine

for
↔
Sγ has two states, as indicated in fig. (3.3)

B C

↓1

↑1

Figure 3.3: The recurrent portion of the ε-machine for the period 2 config-
uration, Eq. (3.4).

How can we use the machine of fig. (3.3) to reproduce
↔
Sγ? Unlike our

previous examples, it is not clear where to begin: B or C? A first response,
in keeping with the statistical mechanics tradition of considering mainly
equilibrium, infinite systems, is that it doesn’t matter. If we run the system
for infinitely long we will statistically reproduce the original configuration.

However, in another sense the state in which we start most definitely does

matter. Suppose we always choose to start in state B. We then examine
all the length 3 strings output by this model. We see that the string ↑↓↑ is
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generated each time. Yet in the original configuration, Eq. (3.4), we observe
Pr(↑↓↑) = 1/2 and Pr(↓↑↓) = 1/2. Our model doesn’t get the statistics of
the configuration right if it outputs finite length strings.

There is an easy remedy for this situation: start in A half the time and
B half the time. We can achieve this by adding a start state to our model,
as shown in Fig. (3.4). We now always begin operating our model in the
unique start state A. In Fig (3.4) and all subsequent figures the start state
will be indicated with a double circle. We can use our new, improved model
to generate finite-length strings that faithfully reproduce the distribution of
finite length spin blocks observed in the original configuration.

The start state is a transient state; it is never revisited after the machine
outputs a symbol and moves to state B or C. The states B and C in fig. (3.4)
are recurrent states, being visited infinitely often (with probability 1) as the
model is operated and an infinite string of symbols is produced. In general
determining how to begin operating the machine will not always be a simple
as choosing one of the recurrent states at random, as was the case for this
particular example

A

B C

↓1

↑1/
2 ↑1/2

↑1

Figure 3.4: The full ε-machine for the period 2 example. The start state,
A, is indicated by the double circle. A is a transient state which is never
visited again after the machine outputs the first symbol. States B and C are
recurrent, visited infinitely often as the machine outputs an infinite string
of symbols.
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3.1.4 Summary of Examples

A few summarizing remarks are in order before moving on to state the

mathematical definition of an ε-machine. First note that the coin toss
↔
Sα

and the period 1 configuration
↔
Sβ both result in an ε-machine with only

one state, an indication that we don’t need to remember any information
about the previous spins to predict the values of the next. Thus, we see
that predicting a perfectly random process and a process with a very simple
configuration are both “easy” tasks in the sense that they require a machine
with only one state.

Second, note that hµ manifests itself as branching in the ε-machine. An
example of branching is shown in fig. (3.1); there are two arrows leaving
state A. Lastly, note that the structure of the ε-machine does not depend
on the names of the variables—all that matters is the probabilities over
configurations. For example, if the symbols H and T are changed to ↑ and
↓, the ε-machine of fig. (3.1) will output different symbols, but its overall
structure remains unchanged.

3.2 Definitions of Causal States and ε-machines

In the preceding section we generated a model, illustrated in fig. (3.4), that is
capable of reproducing the distribution of finite and infinite length blocks of
spins observed in the original translationally invariant infinite configuration.
In this section we put forth a general procedure for constructing such a
model.

First, we seek to generalize the process through which the “effective”
states of the three example systems were discovered. The key step is to
identify the notion of state with the conditional probability distribution
over right half configurations. When forming a model, there is no need
to distinguish between different left half configurations that give rise to an
identical state of knowledge about the right half configurations that can
follow it. Maintaining a distinction between two such states adds to the
memory requirements of the model without increasing its predictive ability.

To make this idea precise, consider the probability distribution of all

possible right halves
→
s conditioned on a particular left half

←
si

L
of length

L at site i: Pr(
→
s |←si

L
). Here, 0 < L < ∞; for L = 0,

←
si

L
is the empty

string, denoted by λ. That is, Pr(
→
s |←si

0
) ≡ Pr(

→
s |λ ) = Pr(

→
s ) denotes

the probability of observing
→
s unconditioned on any spins in the left half of

the configuration.
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We now use this form of conditional probabilities to define an equivalence
relation ∼ on the space of all left halves; the induced equivalence classes

are subsets of the set of all allowed
←

sL
i . We say that two configurations at

different lattice sites are equivalent (under ∼) if and only if they give rise to
conditional distributions over right-half configurations that are identical up
to some tolerance δ. Formally, we define the relation ∼ by

←
si

L ∼ ←sj
L

iff Pr(
→
s |←si

L
) = Pr(

→
s |←sj

L
) + δ ∀ →s , (3.5)

where δ is a tolerance. In the discussion to follow δ is effectively set to zero.

Thus, we require exact equality; Pr(
→
s |←si

L
) = Pr(

→
s |←sj

L
).

Note that there is a mirror image definition of causal states that cor-
respond to scanning the lattice in the opposite direction. Finite-memory
Markov chains respect this symmetry, so for this restricted class of systems
the causal states will be the same regardless of the scanning direction. In the
general case, in which this reversal symmetry need not hold, it it possible

to find different causal states if one scans
↔
S in different directions.

The equivalence classes induced by this relation are called causal states

and denoted Si. These are the “effective states” of the process referred to

above. Two
←
s

L
belong to same causal state if, as measured by the proba-

bility distribution of subsequent spins conditioned on having seen that par-
ticular left-half configuration, they give rise to the same degree of certainty,
within δ, about the configurations that follow to the right. The equivalence
class that contains Pr(

→
s |λ ) is always the start state, as this distribution

corresponds to the distribution known before any spins are observed.
As we saw above, for the period-2 system there are 3 causal states,

indicated in Fig. (3.4) by A, B, and C. These causal states are subsets of

the allowed
←
s

L
;

A = {λ} , (3.6)

B = {←s L|s−1 =↓, si = si+2, L ≥ 1}
= {↓, ↑↓, ↓↑↓, ↑↓↑↓, ↓↑↓↑↓, . . .} , (3.7)

and

C = {←s L|s−1 =↑, si = si+2, L ≥ 1}
= {↑, ↓↑, ↑↓↑, ↓↑↓↑, ↑↓↑↓↑, . . .} , (3.8)

The causal states, as determined by the equivalence classes induced by
Eq. (3.5), give transient as well as recurrent states. Defined more carefully
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than above, transient states are those causal states that are visited infinitely
often with probability 0 in the limit that the machine produces an infinite
configuration. Recurrent states are those visited infinitely often with prob-
ability 1 in the same limit. If one is only interested in the recurrent states,
one need only determine the equivalence classes obtained when the L→∞
limit is considered in Eq. (3.5).

We denote the set of causal states by S = {Si, i = 1, . . . , k}, where for
Markovian processes S is discrete and k is finite—neither of which need to
be true in a more general setting [9, 48].

For the period-2 example, S = {A,B,C}. Let S (T ) denote the set of
transient states and S (R) denote the set of recurrent states. For the period-
2 example S(T ) = {A} and S(R) = {B,C}. Note that S = S (T ) ∪ S(R).

Once the set of causal states S has been identified, we determine the

transition probabilities T
(s)
ij between states upon seeing symbol s ∈ A.

T =
∑

s∈A T (s) is a matrix whose components Tij give the probability of
a transition from the ith to the jth causal state;

Tij ≡ Pr(Sj |Si) . (3.9)

Since the probabilities are normalized,
∑

j Tij = 1 and T is a stochastic
matrix—the probability of leaving a state is unity. Thus, Pr(Si), the proba-
bility of finding the chain in the ith causal state after the machine has been
running infinitely long is given by the left eigenvector of T with eigenvalue
1, normalized in probability. That is, Pr(Si) is given by:

‖S‖
∑

i=1

Pr(Si)Tij = Pr(Sj) . (3.10)

The asymptotic probability of all transient states is zero;

Pr(Si) = 0 ∀ Si ∈ S(T ) . (3.11)

The set {Si} together with the dynamic T constitute a model—referred
to as an ε-machine [16]—of the original infinite configurations. The ε-
machine is a minimal representation of the intrinsic computation being per-
formed by the system under study. The “ε” signifies that, in general, the
measurements may not be direct indicators of the internal states. For exam-
ple, the symbols may be discretizations of measurements that are continuous
in space and/or time.

Note that the determination of an ε-machine does not depend on knowl-
edge of the dynamics or rule through which the configurations were gener-
ated. The causal states and their transition probabilities may be calculated
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given access to the configurations themselves. This procedure through which
this is done is referred to as ε-machine reconstruction.

3.3 What do ε-machines represent?

The ε-machines so defined are a special class of deterministic finite state
machines [7, 29] that have the following properties: (i) a unique start state,
(ii) all states are accepting, (iii) all recurrent states form a single strongly
connected component in the machine’s state graph. Finally, unlike finite
state machines ε-machines transitions are labeled with conditional proba-
bilities. ε-machines can also be viewed as a type of Markov chain. More
correctly they are called “functions of Markov chains” or hidden Markov
models, since the output alphabet differs from the internal state alphabet
[6].

An essential feature of computational mechanics is that it begins by
trying to model the original process using the least powerful model class.
That is, simple finite-memory machines are employed first. However, as
noted above, finite-memory machines may fail to admit a finite size model—
the number of causal states could turn out to be infinite. If this is the case,
a model more powerful than a deterministic finite state machine must be
used. One proceeds by trying to use the next most powerful model in a
hierarchy of machines known as the causal hierarchy [9], in analogy with the
Chomsky hierarchy of formal language theory [7, 29].

The ε-machine provides a minimal description of the pattern or regu-
larities in a system in the sense that the pattern is the algebraic structure
determined by the causal states and their transitions [51]. If, for example,
the ε-machine has an algebraic structure that is a group, then it captures a
translation symmetry is pattern of the configurations “pattern.” Typically,
though, the algebraic structure is a semi-group and so not so easily inter-
preted in terms of “symmetries.” Nonetheless, the algebraic structure is still
the “pattern.”

The ε-machine is a model of the original configuration. From this model,
we can proceed to define and calculate macroscopic or global properties that
reflect the characteristic average information processing capabilities of the
system. This will be the subject of the following few sections.
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3.4 Global Properties from ε-machines

3.4.1 ε-Machine Entropy Rate

Recall that we saw in Eq. (2.7) that the entropy density hµ can be expressed
as the conditional entropy of one spin conditioned on all those spins that
came before it. Using this, it is not hard to show that the entropy density
can be reexpressed in terms of the distribution over the causal states:

hµ = −
∑

{Si}

∑

s∈A

Pr(s,Si) log2 Pr(s|Si) . (3.12)

This result, derived carefully in appendix B, is not that surprising given
the definition of causal states. In defining the causal states, configurations
that led to the same conditional distribution over possible right half configu-
rations were grouped together. As a result, to calculate the entropy density,
one only need consider the conditional entropy of a single spin conditioned
on the previous causal states.

3.4.2 ε-Machine excess entropy

The excess entropy E can also be calculated from the probabilities of the
causal states and their transitions. In the most general setting there is no
compact formula for E in terms of Pr(S) and Pr(s|S), as there was for hµ.
However, for the special case where the causal states are in a one-to-one
correspondence with the values of blocks of the observed variables S, it is
possible to write down a relatively simple formula for E in terms of an ε-
machine. An example of this is given in [22], where ε-machines and the
excess entropy are calculated for one-dimensional Ising systems with finite
range interactions.

3.4.3 Statistical Complexity

In the previous section, we saw how to calculate the entropy density and
the excess entropy from the ε-machine. Motivated by the question: how
much memory is needed to operate this machine? — we now define a new
quantity.

To predict the successive spins in a configuration with an ε-machine as
one scans from left to right, one must track in which causal state the process
is, since knowledge of the causal state gives the appropriate conditional dis-
tribution. Thus, the informational size of the distribution over causal states
Pr(Si), as measured by the Shannon entropy, gives the minimum average
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amount of memory needed to optimally predict the right-half configurations.
This quantity is the statistical complexity [16];

Cµ ≡ −
∑

{Si}

Pr(Si) log2 Pr(Si) . (3.13)

Another, coarser measure of the ε-machine’s size is simply the number
of causal states. This motivates the definition of the topological complexity

C0 as the logarithm of the number of causal states [9]; that is,

C0 = log2 ‖S‖ . (3.14)

The topological complexity ignores the probability of the sequences, simply
describing which sequences occur and which do not.

3.4.4 ε-Machine Thermodynamics

ε-machines also provide a direct way to calculate the fluctuation spectrum,
also known as the spectrum of singularities, “S of U curves” or “f of alpha”
curves [25, 3]. The basic idea is to start with the matrix that gives the
probabilities of transition between causal states as defined in Eq. (3.9). Each
element of the matrix is then raised to the β̃ power:

T (β̃)ij ≡ (Pr(Sj |Si))β̃ . (3.15)

The parameter β̃ is used to scan different “regions” of the probability distri-
bution. For β̃ =∞ only the most probable state is considered, corresponding
to the ground state of the system. At β̃ = 0 all configurations which oc-
cur with nonzero probability are weighted equally. Note that while β̃ acts
like the inverse thermodynamic temperature, it is not identical to it. From
this parameterized transition matrix T (β̃)ij one can efficiently calculate the
fluctuation spectrum. Details are given in Ref. [52].

In Ref. [52] it was shown that calculating the fluctuation spectrum by
first determining the ε-machine and then proceeding as sketched above yields
significantly more accurate results than calculating the spectrum directly
from the configuration by using histograms to estimate probabilities.

3.4.5 Relationships between Quantities

It turns out that the excess entropy sets a lower bound on the statistical
complexity:

E ≤ Cµ . (3.16)
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This result is quite general; it holds for any translationally invariant infinite
configuration [17]. Thus, the memory needed to perform optimal prediction
of the right-half configurations cannot be lower than the mutual information
between the left and right halves themselves. This relationship reflects the
fact that the set of causal states is not in one-to-one correspondence with
L-block or even ∞-length configurations. The causal states are a recon-
struction of the hidden, effective states of the process.

For the special case of Markov chains (equivalently, finite-range spin
systems), in which the values of R-blocks of the observed S ∈ A are in
a one-to-one correspondence with the internal state alphabet S, there is a
precise relationship between Cµ, hµ and E:

Cµ = E + Rhµ . (3.17)

This result is proved and thoroughly discussed in [22].

H[S ′|S] = H[S|S] = hµ . (3.18)

The last equality follows from Eq. (3.12). In light of this, eq. (3.17) follows
immediately.

3.4.6 Related, or not, Measures of “Complexity”

As noted above, an ε-machine is a model of the original process using
the least powerful machine that admits a finite model. In sharp contrast,
Kolmogorov-Chaitin (KC) complexity characterizes symbol sequences by
considering their representation in terms of the most powerful of the com-
putational models, universal Turing machines. Note that for both Cµ and
E no memory is expended trying to account for the randomness or, in this
case, for the thermal fluctuations present in the system. Thus, these mea-
sures of structural complexity depart markedly from the deterministic KC
complexity. As noted above, the per-spin KC complexity is hµ [8, 32].

A quantity more closely related to statistical complexity and excess en-
tropy is the logical depth of Bennett [4]. Whereas the Kolmogorov-Chaitin
complexity of a symbol string is defined as the length of the shortest univer-
sal Turing machine program capable of exactly reproducing that string, the
logical depth is defined as the run time needed to implement the algorithm.

If a string
↔
Sα is random, the shortest UTM program that reproduces it is

the program “Print(
↔
Sα ).” This is a very long program but takes very little

time to run; the program contains only one command. On the other hand, if
a string has a very simple pattern, say all 1’s, then the program to reproduce
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it also takes a quick time to run. All the machine needs to do is loop over
the command “Print (1).” If the string has a great deal of structure, for
example the binary expansion of π, then the minimal program to reproduce
it will involve many operations, and hence take a long time to run.

As a result, like excess entropy and statistical complexity, the logical
depth captures a property distinct from randomness and from that described
by Kolmogorov-Chaitin complexity. Note, however, that Cµ is a measure
of memory while logical depth is a measure of run time. A shortcoming
of logical depth, which it shares with KC complexity, is that it is in gen-
eral uncomputable [8, 32]. That is, unlike statistical complexity and excess
entropy, there exists no general algorithm for its calculation. It should be
noted, however, that in special cases such as finite-state Markov chains, the
average value of the growth rate of the Kolmogorov-Chaitin complexity can
be calculated and is equal to the Shannon entropy rate hµ of the process.

For other approaches to statistical complexity and correlational struc-
ture, see refs. [5, 23, 30, 1, 50].

3.5 Computational Mechanics References

For a more detailed discussion of the motivations and central issues that un-
derlie computational mechanics, see [9, 10]. Computational mechanics has
been successfully adapted and applied to the period-doubling and quasiperi-
odic routes to chaos [16, 17], one-dimensional cellular automata [27, 28],
globally coupled maps [19], recurrent hidden Markov models [9, 48], and
one-dimensional Ising models [11, 22]. Computational mechanics has also
been proposed [39] as a useful tool with which to reexamine the learning
paradox of developmental psychology that concerns the discovery of new
patterns, not seen before [10].

Most of the papers by Crutchfield and the Computational Mechanics
Group can be found at http://www.santafe.edu/projects/CompMech/

papers/CompMechCommun.html. The dissertations of Cosma Shalizi [42],
Karl Young [51] Jim Hanson [26] and Dan Upper [48] might also make good
reading.
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Appendix A

Some Mathematical Details

A.1 Equivalence of Formulae for Entropy Rate

Our goal is to show that equations 2.6 and 2.7 are equivalent. What follows
might be slightly less than rigorous. A rigorous demonstration, complete
with ε’s and δ’s can be found in [8], pages 64-5.

We begin with Eq. (2.6).

hµ ≡ lim
L→∞

H(L)

L
(A.1)

= lim
L→∞

(

H(S0S1 . . . SL−1)

L

)

(A.2)

= lim
L→∞

−1

L

∑

{Si}

Pr(S0S1 . . . SL−1) log [Pr(S0S1 . . . SL−1)] . (A.3)

The sum over {Si} indicates that the sum is to be performed over all the
possible values of all the Si’s.

We now factor the joint probabilities inside the argument of the log into
a large product of conditional probabilities:

hµ = lim
L→∞

{

−1

L

∑

{Si}

[

Pr(S0S1 . . . SL−1) ×

log{Pr(SL−1|S0 . . . SL−2)Pr(SL−2|S0 . . . SL−3)×

Pr(SL−3|S0 . . . SL−4) · · ·}
]

}

. (A.4)

All in all, there will be L conditional probabilities in the argument of the
logarithm. In the L→∞ limit, I claim that all of these conditional probabil-
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ities are equivalent to Pr(SL|S0 . . . SL−1). This slightly dubious observation
enables me to write:

hµ = lim
L→∞

{−1

L

∑

{Si}

[

LPr(S0S1 . . . SL−1)×

log[Pr(SL−1|S0 . . . SL−2)]

]}

. (A.5)

The L’s cancel, and upon comparison with Eq. (1.20), we see that

hµ = lim
L→∞

H(SL−1|S0 · · · SL−2) . (A.6)

This is Eq. (2.7), thus completing our task.

A.2 Equivalence of Expressions for Excess Entropy

I aim to show that Eqs. (2.14) and (2.13) are equivalent. I begin with
Eq. (2.14):

E = MI(
→
S ;

←
S ) . (A.7)

Using Eq. (1.24), I may write:

E =
∑

{Si}

Pr(
←
S ,

→
S ) log[

Pr(
←
S ,

→
S )

Pr(
←
S )Pr(

→
S )

] (A.8)

Factoring the joint probability, I may write the argument of the loga-
rithm as:

Pr(
←
S ,

→
S )

Pr(
←
S )Pr(

→
S )

=
Pr(

←
S )Pr(

→
S |

←
S )

Pr(
←
S )Pr(

→
S )

=
Pr(

→
S |

←
S )

Pr(
→
S )

. (A.9)

This enables me to write:

E =
∑

{Si}

Pr(
←
S ,

→
S )

[

log(Pr(
→
S |

←
S ))− log(Pr(

→
S ))

]

(A.10)

Using Eqs. (2.3) and (2.4), I may reexpress the second term in Eq. (A.10);

−
∑

{Si}

Pr(
←
S ,
→
S ) log(Pr(

→
S )) =

lim
L→∞

[

−
∑

{Si}

Pr(S−L, · · · ,S−1,S0,S1, · · · ,SL−1)×

log [ Pr(S0, · · · ,SL−1) ]

]

. (A.11)
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The sum is understood to run over all possible values of all the Si’s. The sum
over the “past” Si’s — all Si with i < 0 has no effect since the probabilities
are normalized. With this observation, we see that the above equation is
nothing more than the entropy rate of an L-cylinder in the limit that L goes
to infinity. Thus,

Second Term = lim
L→∞

H(L) . (A.12)

Now, the first term in Eq.(A.10) may be written

First Term =
∑

{Si}

Pr(
←
S ,

→
S ) log(Pr(

→
S |

←
S )) =

lim
L→∞

[

∑

{Si}

Pr(S−L, · · · ,S−1,S0, · · · ,SL−1)

log [ Pr(S0 · · · SL−1|S−1, · · · ,S−L) ]

]

. (A.13)

Factoring the probability in the argument of the logarithm as we did in
Eq. (A.4), this may be written;

First Term =
∑

{Si}

Pr(
←
S ,

→
S ) log2(Pr(

→
S |

←
S )) = (A.14)

lim
L→∞

[

∑

{Si}

LPr(S−L, · · · ,S−1,S0,S1, · · · ,SL−1) ×

log2 [ Pr(SL−1|SL−2SL−3 · · · ,S−L) ]

]

(A.15)

= lim
L→∞

[−Lhµ.] . (A.16)

The last equality follows from Eq. (2.7).
So, collecting the first and second terms, I have obtained the desired

result:

E = MI(
→
S ;

←
S )

= lim
L→∞

[H(L)− hµL] . (A.17)

So there.
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Appendix B

Calculation of hµ from an
ε-machine

The goal of this appendix is to derive eqs. (3.12), an expression for the
entropy density hµ in terms of the probability of the causal states and their
transitions. We begin with the expression for the entropy density, eq. (2.7):

hµ = lim
L→∞

H[SL|SL−1SL−2 · · · S1] . (B.1)

Using the definition of the conditional entropy, eq. (1.20), this may be rewrit-
ten as:

hµ = lim
L→∞

∑

sL

∑

{sL−1}

Pr(sL, sL−1) log2 Pr(sL|sL−1) , (B.2)

where sL denotes the single spin variable at site L and SL−1 denotes the
block of L− 1 spins from sites 1 to L− 1.

The causal states S partition the set {sL−1} in the sense that each sL−1

belongs to one and only one causal state. As a result we may reexpress the
sum as follows:

hµ = lim
L→∞

∑

sL

∑

i





∑

sL−1∈Si

Pr(sL, sL−1) log2 Pr(sL|sL−1)



 . (B.3)

Causal states were defined in eq. (3.5) such that two blocks of spins sL−1
i

and sL−1
j belong to the same causal state if and only if Pr(SL|sL−1

i ) =

Pr(SL|sL−1
i ). This observation enables us to perform the sum inside the

large parenthesis in eq. (B.3). Each term in the argument of the logarithm
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is identical, since all the sL−1’s belong to the same causal state. As a result,
we can pull this term outside the sum:

hµ = lim
L→∞

∑

sL

∑

i

log2 Pr(sL|Si)





∑

sL−1∈Si

Pr(sL, sL−1)



 . (B.4)

Note that since we are interested in the L → ∞ limit, we need only con-
cern ourselves with recurrent causal states. The summation inside the large
parenthesis just has the effect of adding up the probabilities of all the iL−1’s
in the ith causal state:

∑

sL−1∈Si

Pr(sL, sL−1) = Pr(sL,Si) (B.5)

Plugging this result into eq. (B.4), we immediately obtain

hµ = −
∑

{Si}

∑

s∈A

Pr(s,Si) log2 Pr(s|Si) . (B.6)

which is eq. (3.12)
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